PENGARUH UMUR DAN JUMLAH BIBIT TERHADAP PERTUMBUHAN DAN HASIL PADI SAWAH VARIETAS WAY APO BURU DI WAENETAT, KABUPATEN BURU

M. P. Sirappa, Rein E. Senewe, Florentina Watkaat, dan Myke J.Van Room

Peneliti dan Penyuluh BPTP Maluku

Abstract

ABSTRAK Suatu pengkajian untuk mengetahui pengaruh umur bibit dan jumlah bibit/rumpun terhadap pertumbuhan dan hasil padi Wayapo Buru telah dilakukan di Dataran Wayapo, Kabupaten Buru pada tahun 2004. Percobaan disusun berdasarkan Rancangan Faktorial dalam RAK dengan dua faktor. Faktor pertama adalah umur bibit (U), yaitu 10 hari setelah sebar (U1), 15 hari (U2), 20 hari (U3), dan 25 hari (U4), dan faktor kedua adalah jumlah bibit/rumpun (J), yaitu 1 batang/rumpun (J 1), 2 batang/rumpun (J 2), dan 3 batang/rumpun (J 3). Parameter yang diukur adalah pertumbuhan dan hasil tanaman yang meliputi : tinggi tanaman, jumlah anakan/rumpun, jumlah malai/rumpun, panjang malai, jumlah gabah/malai, jumlah gabah isi/malai, persentase gabah hampa/malai, bobot 1000 butir dan hasil gabah, serta data usahatani padi sawah. Hasil kajian menunjukkan bahwa umur bibit dan jumlah bibit/rumpun berpengaruh nyata terhadap pertumbuhan dan hasil tanaman. Penggunaan bibit umur 10 hari (U1) dan 15 hari setelah sebar/hss (U2) dan jumlah bibit 1 batang (J 1) dan 2 batang/rumpun (J 2) serta interaksinya, rata-rata memberikan pertumbuhan dan hasil gabah nyata lebih tinggi dibandingkan dengan perlakuan lainnya. Pertumbuhan tanaman tertinggi $(88,33 \mathrm{~cm})$ diperoleh pada kombinasi perlakuan U2JI dan terendah $(82,67 \mathrm{~cm})$. pada kombinasi perlakuan U4JI. Rata-rata hasil gabah tertinggi ($8,16 \dagger \mathrm{GKP} / \mathrm{ha}$) diperoleh pada perlakuan UIJI, menyusul UIJ2 $\quad(8,00 \dagger \mathrm{GKP} / \mathrm{ha})$ sedangkan hasil terendah (6.56 t GKP/ha) diperoleh pada perlakuan U4JI.

Kata Kuncl: Umur Bibit, Jumlah Bibit/Rumpun, Teknologi PTT, Padi Wae Apo Buru

PENDAHULUAN

Lahan sawah masih merupakan tulang punggung produksi padi nasional untuk memenuhi kebutuhan pangan penduduk yang terus meningkat. Namun produksi padi tidak lagi mengalami peningkatan yang berarti, dan kalaupun terjadi peningkatan produksi, keuntungan yang diperoleh petani relatif tidak meningkat karena makin tingginya biaya produksi (Las et al., 2002).

Di masa mendatang, kecenderungan tingkat konsumsi beras per kapita mengalami penurunan dengan laju yang relatif kecil. Namun karena jumlah penduduk Indonesia masih terus meningkat sekitar 1,2 - 1,8 persen per tahun, maka secara agregat total permintaan beras juga akan meningkat. Permintaan beras pada tahun 2004 diperkirakan mencapai 34,3 juta ton dan pada tahun 2005 sekitar 35,8 juta ton (Tim Peneliti Badan Litbang Pertanian, 1998). Di sisi lain, laju peningkatan produksi padi pada periode tertentu menurun sangat tajam, pada hal kontribusi terbesar dalam memenuhi permintaan beras adalah melalui peningkatan produktivitas, yaitu 56,80 \% (Tim Peneliti Badan Litbang Pertanian, 1998).

Kendala dalam peningkatan produksi padi antara lain disebabkan oleh dicabutnya subsidi sarana produksi sehingga petani membatasi penggunaan sarana produksi, seperti benih bermutu, terjadinya deteriorasi kesuburan tanah akibat kegiatan intensifikasi secara terus menerus, pemupukan organik yang terabaikan dan anorganik yang tidak berimbang, dan belum adanya terobosan teknologi baru yang dapat meningkatkan produksi.

Upaya terobosan untuk mengatasi masalah peningkatan produktivitas padi terutama pada daerah pelandaian produktivitas adalah melalui pendekatan pengelolaan tanaman terpadu (PTT), yaitu suatu pendekatan yang mempertimbangkan keserasian dan sinergisme antara komponen teknologi produksi (budidaya) dengan sumberdaya lingkungan setempat. Dengan demikian paket teknologi yang diterapkan bersifat spesifik lokasi, sehingga bisa saja berbeda antar wilayah.

Komponen teknologi PIT antara lain adalah penggunaan varietas unggul baru dengan umur bibit muda, irigasi berkala, pemupukan N dengan Bagan Warna Daun (BWD) dan pupuk P dan K berdasarkan analisis tanah, dan penggunaan bahan organik. Pemakaian pupuk anorganik, terutama N, P, dan K secara intensif serta penggunaan bahan organik yang terabaikan untuk mengejar hasil yang tinggi menyebabkan bahan organik tanah menurun (Las et al., 2002). Keadaan ini akan menurunkan produktivitas lahan. Penambahan bahan organik merupakan suatu tindakan perbaikan lingkungan tumbuh tanaman yang antara lain dapat meningkatkan efisiensi pupuk (Adiningsih dan Rochayati, 1988).

Hasil penelitian Arafah dan Nasruddin (2003), dan Arafah et al. (2004) menunjukkan bahwa umur bibit muda dan 1 batang/rumpun memberikan pertumbuhan dan hasil padi sawah lebih tinggi dibanding umur bibit 21 hari atau 28 hari dengan 3 batang/rumpun. Demikian juga hasil penelitian Arafah dan Sirappa (2003); Sirappa et al. (2002; 2003); Sirappa (2002); Razak dan Sirappa (2003) menunjukkan bahwa penggunaan pupuk organik yang dikombinasi dengan pupuk anorganik serta residunya memberikan
pertumbuhan dan hasil tanaman padi yang lebih tinggi dibandingkan dengan tanpa pemberian pupuk organik.

Dengan demikian, konsep PTT cukup handal dalam mengatasi masalah penurunan produktivitas padi. Menurut Las et al. (2002), implementasi dari penerapan konsep PTT, selain menghemat penggunaan sarana produksi dan menghindari pencemaran lingkungan, juga dapat meningkatkan hasil padi sekitar 15% (kisaran $10 \%-38 \%$).

Penelitian ini bertujuan untuk mengetahui pengaruh umur bibit dan jumlah bibit/rumpun terhadap produktivitas padi Wayapo Buru pada lahan sawah irigasi.

METODOLOGI

Pengkajian merupakan penelitian superimpose dilaksanakan di Desa Waikasar, Kecamatan Waeapo, Kabupaten Buru pada lahan petani yang melaksanakan kegiatan pengkajian PIT (Pengelolaan Tanaman Terpadu) dengan luasan sekitar 0,5 ha. Lahan tersebut merupakan lahan sawah irigasi teknis dan teknologi budidaya padi sawah dilaksanakan berdasarkan konsep PTT, seperti tersaji pada Tabel 1. Kajian berlangsung dari bulan Mei sampai dengan September 2004. Penelitian superimpose juga menggunakan varietas Wayapo Buru dengan luas petak tiap perlakuan $5 \mathrm{~m} \times 6 \mathrm{~m}$. Penelitian superimpose disusun berdasarkan Faktorial RAK 2 faktor, yaitu faktor pertama adalah umur bibit, yakni umur bibit 10 hari (U1), 15 hari (U2), 20 hari (U3), dan 25 hari (U4), dan faktor kedua adalah jumlah bibit/rumpun, yaitu 1 batang (J 1), 2 batang (J 2) dan 3 batang (J 3). Masing-masing pengamatan dilakukan tiga kali. Pesemaian dilaksanakan pada tanggal 12 Mei dan penanaman dilakukan pada tanggal 22 Mei s/d 6 Juni 2004 (sesuai perlakuan umur benih).

Tabel 1. Komponen Teknologi Budidaya Padi Berdasarkan Konsep PTI

Uraian	Komponen Teknologi
Varietas	Wayapo Buru
Pesemaian	basah/seed treatment
Jumlah benih	$15-25 \mathrm{~kg} / \mathrm{ha}$
Umur bibit	$10-15$ hari
Jumlah bibit/rumpun	$1-3$ batang
Sistem tanam	Tapin, 20 $\times 20 \mathrm{~cm}$
Pengelolaan air	Berkala
Pemupukan: - N	BWD
	Analisis Tanah
$-\quad$ K Pupuk organik	Analisis Tanah
	BO 1-2 t/ha
Pengendalian hama/penyakit	PHT
Panen/Pascapanen	Sabit dan pedal/ power thresher

Pengumpulan data agronomis, meliputi tinggi tanaman, panjang malai, jumlah malai/rumpun, jumlah gabah/malai, jumlah gabah isi/malai, persentase gabah hampa/malai, bobot 1000 butir, dan hasil gabah kering. Data-data agronomis yang dikumpulkan ditabulasi dan selanjutnya dianalisis dengan analisis statistik (ANOVA). Jika terdapat perbedaan antar perlakuan dilanjutkan dengan Uji Duncan (Uji Beda).

HASIL DAN PEMBAHASAN

Jenis Tanah dan Iklim

Berdasarkan klasifikasi tanah sistem Soil Taxonomy (Soil Survey Staff, 1998), jenis tanah pada lokasi penelitian termasuk Ordo Inceptisols, Grup Endoaquepts, Subgrup Fluvaquentic Endoaquepts (BPTP Ambon, 2000).

Inceptisols adalah tanah-tanah yang baru mengalami perkembangan horisonisasi yang dicirikan oleh warna, struktur maupun peningkatan kandungan liatnya. Di lokasi penelitian, tanah Inceptisols berkembang dari endapan bahan aluvium (endapan liat, pasir, dan campurannya) dari sedimen tersier yang terdiri dari skis dan mika. Penyebaran tanah Inceptisols pada grup landform aluvial, fluvo-marin, marin, dan tektonik struktural.

Endoaquepts adalah tanah-tanah yang terbentuk dari bahan endapan liat dan pasir (aluvium) yang perkembangannya dipengaruhi oleh air. Wama tanah kekelabuan sampai kelabu di lapisan bawah. Penyebaran Endoaquepts terdapat pada landform aluvial dan aluvio-marin, mempunyai drainase terhambat, warna tanah kelabu sampai kelabu muda, tekstur tanah tergolong liat berdebu sampai lempung berliat, pH tanah agak masam, kadar bahan organik dan nitrogen sedang, P dan K-tersedia sedang. Status kesuburan tanah tergolong sedang.

Berdasarkan data dari stasiun-stasiun pengamat Savanajaya, Namlea dan Wae Tina, daerah Waepo menurut klasifikasi Koppen termasuk tipe iklim Awa (Schmidt dan Ferguson, 1951), sedangkan menurut Oldeman (1980), termasuk zone agroklimat E3 pada stasiun Savanajaya dan Namlea dan B1 pada stasiun Wae Tina. Tipe iklim Awa adalah tipe iklim yang mempunyai tipe hujan tropis dengan suhu udara rata-rata bulan terdingin lebih dari $18^{\circ} \mathrm{C}$ dan suhu rata-rata bulan terpanas lebih dari $22^{\circ} \mathrm{C}$. Terdapat satu atau lebih bulan yang mempunyai curah hujan kurang dari 60 mm dan curah hujan rata-rata tahunan kurang dari 2.500 mm .

Curah hujan rata-rata dalam 8 tahun terakhir (1995-2002) berkisar antara $64,5 \mathrm{~mm}-318,9 \mathrm{~mm} / \mathrm{bulan}$ dengan curah hujan tertinggi terjadi pada bulan Maret dan terendah pada bulan September, seperti terlihat pada Tabel 1.
Tabel 1. Rata-Rata Curah Hujan Kecamatan Waeapo Tahun 1995-2002

Bulan	Curah hujan (mm)								
	1995	1996	1997	1998	1999	2000	2001	2002	
Januari	172,0	506,6	185,0	202,0	306,0	250,0	116.4	260,0	cuid9.7
Februari	239,0	307,0	279.0	240,0	409.5	263,0	117.9	243,0	262,3
Maret	370,0	130,0	290,0	364,4	429.9	312,0	286,7	191,0	296,8
April	160,0	150,0	163,2	617,3	263,2	303,0	489.9	177,0	290,5
Mei	89.0	22,4	18,0	52,5	172.8	138,0	409,0	146,0	130,9
Juni	164,0	143,0	135,0	112,0	119,0	166,0	423,8	157.0	177,5
Juli	157,0	108,0	98,0	127.5	190,0	122,6	77,0	161,0	127,6
Agustus	60,6	121,0	0,0	97,0	76,1	64,0	-	143,0	70,2
September	23,0	59,0	0,0	87,4	73,9	47,0	88,7	136,8	64,5
Oktober	67.0	212,0	0,0	107,0	122,6	35,0	36,5	86,0	83,3
November	443,0	43,2	2,6	251,0	203,0	158,0	148,0	107,0	169,5
Desember	252,0	159,0	324,0	241,0	138,0	257,0	271,0	117,0	222,1

Sumber : Stasiun Meteorologi Waenetat

Pertumbuhan dan Hasil Tanaman
 Tinggi Tanaman

Umur bibit berpengaruh nyata terhadap tinggi tanaman (Lampiran 2). Rata-rata pertumbuhan tanaman tertinggi diperoleh pada penggunaan bibit umur 15 hari (U1), dan berbeda nyata dengan bibit umur 25 hari (U4), tetapi tidak berbeda nyata dengan bibit umur 10 hari (U1) dan 20 hari (U3). Rata-rata tinggi tanaman yang diperoleh lebih rendah dibandingkan dengan tinggi tanaman hasil deskripsi 105 cm -113 cm).

Selanjutnya Lampiran 2 menunjukkan bahwa perlakuan jumlah bibit/rumpun tidak berbeda nyata terhadap tinggi tanaman, namun ada kecenderungan jumlah bibit 1 batang/rumpun rata-rata memberikan pertumbuhan tanaman lebih tinggi ($86,00 \mathrm{~cm}$). Sedangkan interaksi antara umur bibit dan jumlah bibit berpengaruh nyata terhadap tinggi tanaman. Kombinasi perlakuan yang memberikan tinggi tanaman tertinggi $(88,3 \mathrm{~cm})$ adalah perlakuan U2J1 (bibit umur 15 hari dan jumlah bibit 1 batang/rumpun) dan terendah ($82,67 \mathrm{~cm}$) diperoleh pada kombinasi perlakuan U4JI (bibit umur 25 hari dan 1 batang/rumpun), seperti terlihat pada Lampiran 2.

Panjang Malal

Umur bibit dan jumlah bibit/rumpun serta interaksinya tidak berpengaruh nyata terhadap panjang malai (Lampiran 2). Namun penggunaan bibit umur 10 hari cenderung memberikan rata-rata panjang malai lebih tinggi dibandingkan dengan penggunaan bibit umur lainnya. Demikian juga, jumlah bibit 1 batang/rumpun cenderung memberikan rata-rata panjang malai lebih tinggi dibandingkan dengan jumlah bibit/rumpun lainnya. Sedangkan interaksi antara umur bibit dan jumlah bibit/rumpun memberikan panjang malai tertinggi ($23,67 \mathrm{~cm}$) masing-masing adalah kombinasi perlakuan umur bibit 10 hari dengan jumlah anakan 1 batang dan 2 batang/rumpun (perlakuan UIJI; perlakuan U1J2) dan kombinasi
perlakuan umur bibit 15 hari dengan jumiah anakan 1 batang/rumpun (perlakuan U 2 Jl), sedangkan yang terendah ($21,33 \mathrm{~cm}$) diperoleh pada kombinasi perlakuan umur bibit 20 hari dan jumlah bibit 2 batang/rumpun (perlakuan U3J2), seperti pada Lampiran 2.

Jumlah Anakan/Rumpun

Umur bibit dan jumlah bibit/rumpun tidak berpengaruh nyata terhadap jumlah anakan/rumpun (Lampiran 2). Rata-rata jumlah anakan terbanyak (12,00 anakan) diperoleh pada penggunaan bibit umur 10, 15 dan 20 hari, sedangkan anakan terendah (11,00 anakan) diperoleh pada penggunaan bibit umur 25 hari. Jumlah anakan tertinggi diperoleh pada penggunaan 3 batang/rumpun (12,00 anakan) dan terendah pada penggunaan bibit 1 batang/rumpun (11,42 anakan).

Interaksi antara umur bibit dan jumlah bibit/rumpun memberikan perbedaan nyata terhadap jumlah anakan/rumpun (Lampiran 2). Jumlah anakan terbanyak (13,00 anakan) diperoleh pada kombinasi perlakuan U2J3 (bibit umur 15 hari dan jumlah bibit 3 batang/rumpun) dan jumlah anakan terendah (10,67 anakan) diperoleh pada kombinasi perlakuan bibit umur 15 hari dan 25 hari dengan jumlah bibit 1 batang/ rumpun (perlakuan U2 JI dan perlakuan U 4 J 1), seperti pada Lampiran 2.

Jumial Mailai/Rumpun

Untur bibit berpengaruh nyata terhadap jumlah malai/rumpun sedangkan jumlah bibit/rumpun tidak berpéngäith nyata (Lampiran 2). Rata-rata jumlah malai terbanyak diperoleh pada bibit umur 10 hari (Depighain U1)dan berbeda nyata dengan umur bibit 20 hari (perlakuan U3) dan umur bibit 25 hari (peifokyan U4), namun dengan bibit umur 15 hari (perlakuan U2) tidak berbeda nyata. Penggunaan 3 bátang bibit/rumpun (perlakuan J3) cenderung memberikan jumlah malai lebih banyak dibanding perlakuan jumlah bibit lainnya.

Interaksi umur bibit dan jumlah bibit/rumpun memberikan pengaruh nyata terhadap jumlah malai/rumpun (Lampiran 2). Jumlah malai terbanyak (14,33 malai) diperoleh pada kombinasi perlakuan bibit umur 10 hari dengan jumlah bibit 2 batang/rumpun (perlakuan U1J2), sedangkan jumlah malai terendah (9.67 malai) diperoleh pada kombinasi perlakuan U2J2; perlakuan U3J2; dan perlakuan U4J1), seperti pada Lampiran 2.

Jumiah Gabah/Malai

Umur bibit tidak berpengaruh nyata terhadap jumlah gabah/malai (Lampiran 3), namun ada kedenderungan bahwa penggunaan bibit umur 10 hari (perlakuan U1) rata-rata memberikan jumlah gabah yang lebih tinggi dibandingkan dengan bibit umur lainnya, dan jumlah gabah/malai terendah diperoleh pada bibit umur 25 hari (perlakuan U4).

Jumlah bibit/rumpun berpengaruh nyata terhadap rata-rata jumlah gabah/malai (Lampiran 3). Penggunaan 1 batang bibit/rumpun (perlakuan Jl) memberikan jumlah gabah tertinggi dan tidak berbeda nyata dengan penggunaan bibit 2 batang/rumpun (perlakuan J2), namun terhadap bibit 3 batang/rumpun (perlakuan J3) berbeda nyata.

Lampiran 3 menunjukkan bahwa interaksi dari umur bibit dan jumlah bibit/rumpun memberikan pengaruh nyata terhadap jumlah gabah/malai. Rata-rata jumlah gabah/maiai terbanyak (138,33 butir) diperoleh pada kombinasi periakuan bibit umur 10 hari dengan 2 batang/rumpun (perlakuan U1J2) dan berbeda nyata dengan kombinasi perlakuan lainnya, kecuali terhadap kombinasi periakuan UIJI tidak berbeda nyata. Jumlah gabah/malai terendah diperoleh pada kombinasi perlakuan umur bibit 10 hari dengan 3 batang/rumpun (perlakuan U1 J3), seperti pada Lampiran 3.

Jumiah Gabah Isi/Malai

Umur bibit tidak memberikan pengaruh nyata terhadap jumlah gabah isi/malai (Lampiran 3). Terdapat kecenderungan makin lama umur bibit di pesemaian, jumlah gabah isi/malai makin sedikit. Sedangkan jumlah bibit/rumpun berpengaruh nyata terhadap jumlah gabah isi/malai. Penggunaan bibit 1 batang/rumpun rata-rata memberikan jumlah gabah isi/malai nyata lebih tinggi dibandingkan dengan penggunaan bibit 2 batang dan 3 batang bibit/rumpun.

Interkasi umur bibit dan jumlah bibit/rumpun berpengaruh nyata terhadap jumlah gabah isi/malai (Lampiran 3). Kombinasi perlakuan umur bibit 10 hari dan 1 batang bibit/rumpun (perlakuan U1JI) memberikan jumlah gabah isi/malai terbanyak (128,33 butir) dan berbeda nyata dibandingkan dengan kombinasi perlakuan lainnya, kecuali terhadap kombinasi perlakuan V 1 J 2 dan perlakuan U 4 J . Sedangkan jumlah gabah isi terendah (79,67 butir) diperoleh pada kombinasi perlakuan umur bibit 10 hari dengan iumlah bibit 3 batang/rumpun (perlakuan U1 J3), seperti pada Lampiran 3.

Persentase Gabah Hampa

Umur bibit dan jumlah bibit/rumpun tidak berpengaruh nyata terhadap persentase gabah hampa/malai (Lampiran 3). Terdapat kecenderungan makin cepat penggunaan bibit, persentase gabah hampa semakinj meningkat, namun masih tergolong rendah (< 5%). Sedangkan penggunaan bibit 2 batang/rumpun (perlakuan J2) memberikan persentase jumlah gabah hampa yang lebih bonyak dibanding jumlah bibit 1 batang/rumpun (perlakuan JI) dan 3 batang/rumpun (Perlakuan J 3).

Interaksi antara umur bibit dan jumlah bibit/rumpun berpengaruh nyata terhadap persentase gabah hampa (Lampiran 3). Persentase gabah hampa terbanyak (8,67 \%) diperoleh pada penggunaan bibit umur 10 hari dan jumlah bibit 2 batang/rumpun (perlakuan U1J2), sedangkan persentase gabah hampa terendah ($1,33 \%$) diperoleh pada bibit umur 10 hari dan jumlah bibit 3 batang/rumpun (periakuan UI J 3), seperti pada Lampiean 3.

Bobot 1000 Butir

Umur bibit dan jumlah bibit/rumpun tidak memberikan pengaruh yang nyata terhadap bobot 1000 butir (lampiran 3). Penggunaan bibit umur 25 hari (perlakuanb U4) rata-rata memberikan bobot 1000 biji lebih tinggi (dibandingkan dengan bibit umur 10 hari, 15 hari dan 20 hari. Jumlah bibit 3 batang/rumpun (perlakuan J3) juga memberikan rata-rata bobot 1000 butir yang lebih tinggi dibanding jumlah bibit 1 batang dan 2 batang/rumpun. Rata-rata bobot 1000 butir gabah yang diperoleh relatif sama dengan hasil deskripsi, yaitu $27-28 \mathrm{~g}$.

Interaksi umur bibit dan jumlah bibit/rumpun memberikan pengaruh nyata terhadap bobot 1000 butir. Kombinasi perlakuan umur bibit 10 hari dengan 3 batang bibit/rumpun (perlakuan U 1 J 3) memberikan rata-rata bobot 1000 butir gabah tertinggi $(28,67 \mathrm{~g})$ dan bobot 1000 butir gabah terendah $(25,67 \mathrm{~g})$ diperoleh pada kombinasi penggunaan bibit umur 20 hari dan jumlah bibit 1 batang/rumpun (perlakuan U3J1), seperti pada Lampiran 3.

Hasill Gabah

Umur bibit dan jumlah bibit/rumpun tidak berpengaru' nyata terhadap hasil gabah (Lampiran 3), Terdapat kecenderungan penggunaan bibit muda memberikan hasil gabah lebih tinggi dibandingkan dengan penggunaan bibit tua. Hasil gabah tertingg ($7,95 \dagger \mathrm{GKP} / \mathrm{ha}$) diperoleh pada penggunaan bibit umur 10 hari (perlakuan U1), sedangkan hasil gabah terendah ($6,97 \dagger$ GKP/ha) diperoleh pada penggunaan bibit umur 25 hari (perlakuan U4). Demikian juga penggunaan jumlah bibit 2 batang/rumpun (perlakuan J2) cenderung memberikan hasil gabah yang lebih tinggi dibandingkan dengan jumlah bibit 1 batang/rumpun (perlakuan JI) dan 3 batang/rumpun (perlakuan J 3).

Interaksi umur bibit dan jumlah bibit/rumpun memberikan pengaruh nyata terhadap hasil gabah (Lampiran 3). Kombinasi perlakuan umur bibit 10 hari dan 1 batang/rumpun (perlakuan U1 JI) rato-rata memberikan hasil gabah lebih tinggi ($8,16+$ GKP) dibandingkan dengan kombinasi perlakuan lainnya, dan hasil gabah terendah ($6.56 \dagger \mathrm{GKP} / \mathrm{ha}$) diperoleh pada kombinasi bibit umur 25 hari dan jumlah bibit 1 batang/rumpun (perlakuan U4JI), seperti pada Lampiran 3. Rata-rata hasil yang diperoleh relatif sama dengan kisaran hasil berdasarkan deskripsi ($5 \dagger-8 \dagger$ /ha). Deskripsi padi Wayapo Buru disajikan pada Lampiran 1.

KESIMPULAN DAN SARAN

- Penggunaan bibit umur 10 hari dan 15 hari setelah sebar dan jumlah bibit 1 batang dan 2 batang/rumpun, rata-rata memberikan pertumbuhan dan hasil gabah padi varietas Way Apo Buru lebih tinggi dibandingkan dengan perlakuan lainnya.
- Rata-rata hasil gabah petani koperator pada penelitian superimpose dengan teknologi PTI adalah $7,6 \dagger$ GKP /ha sedangkan petani non koperator dengan teknologi petani sebesar $4,3 \dagger$ GKP/ha.
- Komponen teknologi PTT masih perlu kajian lebih lanjut pada sentra produksi padi lain dan waktu tanam yang bebeda.
- Pengembangan teknologi PTr perlu mendapat dukungan dari pemerintah dan instansi terkait.

DAFTAR PUSTAKA

Adiningsih, Sri J. dan Sri Rochayati. 1988. Peranan Bahan Organik dalam Meningkatkan Efisiensi Pupuk dan Produktivitas Tanah. Hal. 161-181. Dalam M. Sudjadi et al. (eds). Pros. Lokakarya Nasional Efisiensi Pupuk. Puslittan, Bogor.
Arafah dan Nasruddin. 2003. Pengaruh Umur Bibit dan Jumlah Bibit terhadap Pertumbuhan dan Hasil Padi Sawah. Jurnal Agrivigor, Vol. 3 (1) : 51-58. Jurusan Budidaya Pertanian, Fapertahut, Unhas, Makassar.
Arafah, Nasruddin dan Hasanuddin. 2004. Budidaya Tanaman Padi Sawah pada Berbagai Umur Bibit dan Jumlah Bibit. Jurnal Agrivigor, Vol. 3 (2) : 118-123. Jurusan Budidaya Pertanian, Fapertahut, Unhas, Makassar.
Arafah dan M. P. Sirappa. 2003. Introduksi Bahan Organik Jerami dalam Pengelolaan Tanaman dan Sumberdaya Terpadu Padi Sawah. Jurnal Agrovigor, Vol. 3 (3) : 204-213. Jurusan Budidaya Pertanian, Fapertahut, Unhas, Makassar.
BPTP Ambon. 2000. Pemetaan Sumberdaya Lahan Tingkat Semi Detail Daerah Dataran W.Apu P. Buru Skala 1:50.000. Bagian Proyek ARMP II Maluku. BPTP Ambon.
Las. I., A. K. Makarim, Husin M. Toha, dan A. Gani. 2002. Panduan Teknis Pengelolaan Tanaman dan Sumberdaya Terpadu Padi Sawah Irigasi. Badan Litbang Pertanian. Departemen Pertanian.
Oldeman, L.R. 1980. An Agroclimatic Map of Moluccas. CRIA, Bogor.
Razak, N. dan M. P. Sirappa. 2003. Penggunaan Kompos Jerami yang Dikombinasikan dengan Pupuk NPK untuk Peningkatan Produktivitas Padi Sawah. J. Agroland, Vol. 11 (3) : 227-234. Faperta Untad, Palu.
Soil Survey Staff. 1998. Keys to Soil Taxonomy. Eight Edition. Natural Resources Conservation Service. USDA, Washington DC.

Schmidt, F. and H. Ferguson. 1951. Rainfal Type Based on Wet and Dray Period Ratios for Indonesia with Western New Guinea. Publ. 42, Jaw. GEEFMet., Jakarta.
Sirappa, M. P. 2002. Tanggapan Tanaman Padi dan Kedelai terhadap Pemberian Pupuk Organik yang Dikombinasi dengan Pupuk Anorganik pada Pola Tanam Padi-Kedelai di Lahan Sawah Irigasi (Belum terbit).
Sirappa, M.P., M. Azis Bilang, dan Kasman. 2002. Kajian Penggunaan Pupuk Organik Bokaplus dan ZA terhadap Usahatani Padi Sawah di Bone (Belum terbit).
Sirappa, M.P., M. Azis Bilang, Kasman, M. Djafar Baco, N. Sahibe, Muslimin, dan H. Tahir. 2003. Peningkatan Produktivitas Padi Terpadu, PIT, SIPT, dan KUAT Sulawesi Selatan (Kabupaten Bone). Hal. 436-486. Dalam Pros. Lokakarya Pelaksanaan Prohram P3T Tahun 2002. Puslitbantan, Badan Litbang Pertanian.
Tim Peneliti Badan Litbang Pertanian. 1998. Laporan Hasil Penelitian Optimalisasi Pemanfaatan Sumberdaya Alam dan Teknologi untuk Pengembangan Sektor Pertanian dalam Pelita VII. Puslittanak, Bogor.

Lampiran 1. Deskripsi Varietras Way Apo Buru

Lampiran 2. Rata-rata pertumbuhan tanaman padi Wayapo Buru pada kajian PTT di Desa Waekasar, Kec. Waeapo, Kab. Buru, 2004

Keterangan : - Simbol perlakuan that keterangan Lampiran 3

- Angka-angka yang diikuti huruf yang sama tidak berbeda nyata pada taraf 0,05 Uji Duncan

Lampiran 3. Rata-rata komponen hasil padi Wayapo Buru pada kajian PIT di Desa Waekasar, Kec. Waeapo, Kab. Buru, 2004

Perlakuan	Jumlah gabah/malai	Jumiah gabah isi/malai	Persentase gabah hampa/malai	Bobot 1000 biij (g)	Hasil GKP (t / ha) ${ }^{*}$
U1	117.44 a	111,56 a	4,56 a	27,44 a	7.95 a
U2	114,89 a	109,67 a	4,44 a	27,44a	7,20a
U3	107,44 a	102,11 a	3,00 a	26,89 a	7.20 a
U4	105,67 a	102,56 a	3,22 a	27,56 a	6.99 a
J1	122.17 a	191,75 a	3,25 a	27.17 a	7.20 a
J2	110,25 ab	104,50 b	4,92 a	27,17 a	7.44 a
J3	101,67 b	98,17 b	3,25a	27.67 a	7.36 a
$41 \times J 1$	$133,00 \mathrm{ab}$	128,33 a	$3,67 \mathrm{ab}$	27,67 a	8,16a
U1 $\times \mathrm{J} 2$	138,33 a	126,67 a	8,67 c	26,00 ab	8,00 a
U1 $\times 13$	81,00 e	79,67e	1,33a	28,67 a	7,68 a
U $2 \times \mathrm{J} 1$	$116,33 \mathrm{~cd}$	110,67 c	4,67 b	27,67a	$7,04 \mathrm{ab}$
$\mathrm{U} 2 \times \mathrm{J} 2$	108,00 d	104,67 c	3,00 ab	27,00 a	6,88 b
$\mathrm{U} 2 \times \mathrm{J} 3$	120,33 c	$113,67 \mathrm{bc}$	5,67 bc	27,67a	7,68 a
U3 $\times 11$	$114,67 \mathrm{~cd}$	105,33 c	2,67 a	25,67 b	$7,04 a b$
U3 \times J2	98,33 d	95,33 d	$3,00 \mathrm{ab}$	27,00 a	7.52 a
U3 $\times 13$	109,33 d	105,67 c	$3,33 \mathrm{ab}$	28,00 a	$7,04 \mathrm{ab}$
44×11	$124,67 \mathrm{bc}$	$122,67 \mathrm{ab}$	$2,00 \mathrm{a}$	27,67 a	6,56b
$\mathrm{U} 4 \times \mathrm{J} 2$	96,33 d	91,33 d	5,00 bc	28,67 a	7.36 a
U 4×13	$96,00 \mathrm{~d}$	$93,67 \mathrm{~d}$	2,67 a	26,33 ab	$7,04 \mathrm{ab}$

[^0]$\mathrm{U} 1=$ umur bibit 10 hari
$\mathrm{U} 2=u m u r$ bibit 15 hari
$\mathrm{U} 3=$ umur bibit 20 hari
$\mathrm{U} 4=$ umur bibit 25 hari
$\mathrm{J} 1=1$ batang/rumpun
$\mathrm{J} 2=2$ batang/rumpun
$\mathrm{J} 3=3$ batang/rumpun

[^0]: Keterangan: ${ }^{9}$ Hasil konversi ubinan $2.5 \mathrm{~m} \times 2.5 \mathrm{~m}$

 - Angka-angka yang dilikuti huruf yang sama tidak berbeda nyata pada taraf 0,05 Uji Duncan

