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ABSTRACT  
 

Spectroscopy studies material responses to the incident electromagnetic radiation. This method has been 

proven to be cost-effective for either soil or plant nutrient analysis. Furthermore, it offers rapid and high 

throughput quantitative data measurement with non-destructive, waste-free and minimal sample 

preparation processes. This article reviews potential use of spectroscopy technology in land resources 

monitoring as the cost-effective solution, particularly in the developing nations where natural resources 

monitoring might not be part of national development priority. The discussion is focused on the use of 

visual/near-infrared spectroscopy (VNIRS) for soil nutrients prediction, particularly to support cropland 

nutrient management of three main food crops in Indonesia, i.e. paddy, maize, and soybean.  
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ABSTRAK  
 

Spektroskopi mempelajari respon materi terhadap radiasi elektromagnetik yang terjadi. Metode ini telah 

terbukti efektif dari segi biaya untuk analisis nutrisi tanah atau tanaman. Selain itu, Teknik spektroskopi 

menawarkan pengukuran data kuantitatif yang cepat berpresisi tinggi dengan tanpa merusak sampel, bebas 

limbah, dan presiapan sampel minimal. Artikel ini mengulas potensi penggunaan teknologi spektroskopi 

dalam pemantauan sumber daya lahan sebagai solusi yang hemat biaya, terutama di negara-negara 

berkembang di mana pemantauan sumber daya alam mungkin bukan merupakan prioritas pembangunan 

nasional. Diskusi difokuskan pada penggunaan spektroskopi pada pita visual/inframerah-dekat (VNIRS) 

untuk prediksi nutrisi tanah, terutama untuk mendukung pengelolaan nutrisi lahan pertanian dari tiga 

tanaman pangan utama di Indonesia, yaitu padi, jagung, dan kedelai. 
 

Kata kunci: Monitoring sumber daya lahan, management nutrisi-tanah, VNIRS 
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BACKGROUND 

 
 Anthropogenic pressure on the ecosystem services is increased with the global population growth, 

which is expected to reach 9.7 billion people by 2050 (Cohen, 2003; United Nations, 2015). But since the 

population increase is not balanced with the extension of the arable land, the ratio of the cultivated land 

per person is decreasing overtimes, with global average at 0.2 ha/persons in 2014, which was 13% de-

crease from 2000 (World Bank, 2014). This ratio is particularly lower in the developing nations where high 

population increases are expected to occur, i.e. 0.18 ha/person in an average of non-high-income coun-

tries, compared to 0.30 ha/person in high-income countries. As the land to people ratio receding, agricul-

tural land has been intensified to fulfill the increasing human needs for food in the past decades. However, 

mismanagement on land uses has been degrading land quality that even lowering its productivity. For ex-

ample, the application of inorganic fertilizer, which is usually coupled with pesticide, is a common practice 

to enhance crop productions. But misapplication due to less information on the status of the soil properties 

might lead to over-fertilization that not only does not contribute to the plant growth but also increasing 

pollution to the surrounding ecosystem (Brady and Weil, 2008). Furthermore, not only mismanagement in 

land use practices, this condition is also worsened by the global climate change that increases the probabil-

ity of crop failure, due to the increasing frequency of flood or prolonged drought periods. Therefore, the 

challenge to the land managers is increased on how to sustain food production while maintaining the quali-

ty of the land resources in the changing environment. 

 Resource information is the key to management before application of certain strategies. In term of 

crops production, therefore, quantitative understanding of the status of the soil properties and plant nutri-

ents are needed before particular land management scenarios are going to be applied at any locations. Soil 

and plant nutrients can be monitored at best precision through traditional sampling and laboratory analysis, 

but these practices are resource demanding in term of money, time, and workload (Foley et al., 1998; van 

Maarschalkerweerd and Husted, 2015); hence, feasible only at the smaller scale of observation. Further-

more, some of the laboratory procedures even produce wastes that later might be endangering the ecosys-

tem. At the other hand, qualitative monitoring, such as leaf color observation to identify plant diseases and 

nutrient deficiencies, although simple and low cost but only gives vague results that later cannot be used 

as the quantitative basis for resource use efficiency. A quantitative cost-effective method for land resources 

monitoring is therefore needed to support continuous and extensive land resources management. This re-

view is intended to address this issue by proposing spectroscopy method as the cost-effective solution for 

soil and plant monitoring to support land resources management, particularly in the developing nations 

where natural resources monitoring might not be the part of the development program priority. The discus-

sion is going to be focused on the use of visual/near-infrared spectroscopy (VNIRS) for soil nutrients pre-

diction, particularly to support cropland nutrient management of three main food crops in Indonesia, i.e. 

paddy, maize, and soybean. 
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Spectroscopy Application in Soil and Plant Nutrients Analysis 

 Spectroscopy studies material responses to the incident electromagnetic radiation. This method, es-

pecially the lower energy (less than 3.1 eV) spectroscopy that includes visible up to near-infrared region 

(VNIR), has been proven to be cost-effective for either soil or plant nutrient analysis, and offers rapid and 

high throughput quantitative data measurement with non-destructive, waste-free and minimal sample 

preparation processes (Foley et al., 1998; Lee et al., 2010; Shepherd and Walsh, 2007; Viscarra-Rossel et 

al., 2006). Furthermore, recent advances in spectroscopy also open the possibility to perform in-situ VNIR 

spectral measurements, which result in comparable outcomes with laboratory-based spectroscopy analysis 

(Viscarra-Rossel et al., 2009). The reflectance electromagnetic spectrum within this wavelength region 

shows spectral signature for different molecules due to asymmetric vibration of the molecular bond, which 

is caused by molecular stretching and/or bending, that absorbs incident light at the range of its vibration 

frequency (Foley et al., 1998; Stenberg et al., 2010). The resulted reflectance/absorbance spectrum is, 

therefore, an indirect measurement of the material properties containing spectrally active molecules, which 

later needs to be calibrated with the known composition sample (Stenberg et al., 2010; van Maarschalker-

weerd and Husted, 2015). Furthermore, content or properties that are related to other spectrally non-active 

molecules might also be retrieved by observing its correlation with the properties of the spectrally active 

molecules (Brown et al., 2006; Idowu et al., 2008). Table 1 summarizes spectral signature of several 

known compounds with its related properties in the range of VNIR wavelength (Stenberg et al., 2010; Vis-

carra-Rossel et al., 2009).  

Table 1. Spectral signature at VNIR region of several known compounds 

 Spectroscopy has been applied in the quantitative nutrient monitoring of soil and plant with various 

degree of precision. This technique has been more broadly applied in soil than in plant monitoring due to 

its practicability, cost efficiency, and result stability (van Maarschalkerweerd and Husted, 2015). In agricul-

ture, crop nutrients availability can be measured with spectroscopy directly at the plant tissues or through 

soil. While plant spectroscopy analysis might give instant reading about plant nutrient availability, this 

method might be less practical since it is not only influenced by the individual properties of the crop spe-

cies, such as the crop cultivar or the individual crop health (related to pest and diseases), it is also time and 

site-specific, and therefore, varies depending on the multiple parameters such as the growing stage, sea-

son, soil quality, and the sample conditions (Stenberg et al., 2010). Soil spectral measurement at the other 

hand can be performed with the more stable sample at a more flexible time (before, during, or after the 

growing season). Compare to plant, the soil has less variability and more resistance to changes so that the 

sample represents the larger area and its analysis result might still valid for longer time periods. Therefore, 

soil spectroscopy is more effective and efficient for agricultural management planning. For nutrient man-

agement, the pattern of the soil nutrient status can be monitored periodically at specific times during the 

growing period, and the result, together with the recorded amount of soil amendment inputs, can then be 

correlated with the crop productions, to define fertilizer recommendation. Furthermore, plant spectroscopy 

might be utilized to confirm the results this recommendation. 
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 Published literature have shown that several properties of the soil and plant have been successfully 

predicted from its spectral pattern. In the region of VNIR (400 - 2500 nm), soil organic carbon is the soil 

property with relatively high predictability, with adjusted coefficient of correlation on validation (   ) higher 

than 0.85 (Chang et al., 2001; He et al., 2007; Vasques et al., 2010, 2009, 2008). The soil organic carbon 

is highly predictable by spectroscopy method since the structure of the soil organic carbon is mainly com-

posed of O-H, C-O, and C-H bonding that are spectrally active in the near infrared region. Furthermore, 

among the soil macronutrients, which the information is used for fertilizer recommendation, only soil availa-

ble nitrogen (N) is having high predictability, with     for N and either of phosphorus (P) or potassium (K) 

are in the range of more and lower than 0.85 respectively (Chang et al., 2001; He et al., 2007). High pre-

dictability of soil N is due to strong spectral signature of amide (C-N) and/or amine (N-H) bonding and also 

its correlation to SOM content (Stenberg et al., 2010). Nevertheless, the N concentration in soil is also gen-

erally much higher than either P or K, which is in the order of g/kg and mg/kg, respectively; hence, having 

better signal to noise ratio. At the sites where soil P concentration is higher, however, the predictability of 

the soil available P is improved with     more than 0,85 (Bogrekci and Lee, 2005). Other soil properties that 

are discernable in the range of VNIR wavelength include: soil color and mineral composition, including iron 

oxides (Haematite, Goethite), clays (ex. Smectite, Kaolinite, Attapulgite), and carbonates; soil structure, 

which is derived from clay content; other soil nutrients, such as Calcium (Ca), Iron (Fe), Magnesium (Mg), 

and Manganese (Mn); soil cation exchange capacity (CEC); and soil water content, including soil moisture 

and 1.5 MPa water (Chang et al., 2001; Viscarra-Rossel et al., 2009). Further soil spectral observation in 

the mid-infrared (MIR) region shows up to 10% improvement of the coefficient of correlation on the cali-

bration model generated by VNIRS, particularly for soil organic carbon and organic matter content (Knox et 

al., 2015; Viscarra-Rossel et al., 2006). This result is mainly caused by stronger fundamental vibration for 

organic matter molecules at the MIR region, compared to its weaker overtones that is observable at the 

VNIR region (Foley et al., 1998; Knox et al., 2015; Stenberg et al., 2010; Viscarra-Rossel et al., 2006). 

However, for mass application of land resources monitoring, it is worth noticing that the improvement from 

MIR spectroscopy analysis is achieved by trading off the ease of use of VNIRS that offers more rapid meas-

urements, simple sample preparation, low cost of the instrumentation, and also the possibility of in-situ 

measurement (Viscarra-Rossel et al., 2006).  

 VNIRS is vastly used to measure plant chlorophyll, from in-situ measurement up to satellite-based 

remote sensing. The reflectance value at Red (        ) and NIR (       ) regions are used to construct formu-

la to calculate the normalized difference vegetation index  (                          ). Leaf with higher chlorophyll 

content absorbs incident light at the Red region; hence, result in low reflectance, yielding NDVI value close 

to 1 (van Maarschalkerweerd and Husted, 2015). Two plant minerals related to chlorophyll content that can 

be predicted using VNIRS are N and Mg. Other detectable organic compounds include lipids and ester, 

which is related to organic P content (van Maarschalkerweerd and Husted, 2015), and also phenolic and 

lignin (Foley et al., 1998). Furthermore, for grass type plants, the VNIRS calibrations yield relatively high 

prediction performance models for the plant macronutrient analysis (including N, P, K, Mg, and Ca), but 

lower performance for the micronutrients (including Fe, Mn, Zn, and Cu), with average      more and lower 

than 0.8 respectively (de Aldana et al., 1995; Huang et al., 2009; Ward et al., 2011). The low predictability 

of the plant micronutrients contents might be due to its lower concentration in the plant tissues, such that 

its variability is overshadowed by the spectrum noises.   
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Agricultural Profile and Challenges in Indonesia 

 Indonesia is an archipelagic country with about 2/3 of its territorial area is the ocean. It is located on 

the equator at about 120o longitude, with the total land area is about 181.2 million hectares. Its ratio of the 

arable area to the total land area increased from about 10% at 1961 to 13% at 2014, but it is imbalance 

with the population increasing rate, as Indonesia population increased from about 88 million to 254.5 mil-

lion at the same period; therefore, reducing the arable land to population ratio from 0.20 to 0.09 ha/person 

(World Bank, 2014). As the result, food demand increased and croplands then were intensified, especially 

for the three main food crop commodities in Indonesia, i.e. paddy, maize, and soybean. The intensification 

was indicated by the increasing area of the irrigated agricultural lands, from about 130,000 to 530,000 hec-

tares in the period of 2008-2012 (Indonesia Directorate General of Agricultural Infrastructure and Facilities, 

2012), and the increasing of the total fertilizer input per hectare of land, including Urea, Ammonium, Phos-

phate, NPK, and organic fertilizer, from about 390 to 500 kg/ha (national average) in the period of 2007-

2014, with increasing rate at about 15 kg/ha/year (Indonesia Center for Agricultural Data and Information, 

2014; Indonesia Directorate General of Agricultural Infrastructure and Facilities, 2012; Indonesia Fertilizer 

Producers Association, 2017). Furthermore, although highly variable, the fertilizer consumption to produce 

one ton of food also shows increasing trend, at about 1 kg/ton/year. This trend not only becoming one of 

the possible cause of the food price increases, but can also have two possible meaning, which is either (1) 

inefficient fertilizer application, which increasing the risk of ecosystem pollution, and/or (2) the sign of soil 

degradation, in which more soil amendment is required to stabilize its productivity. Inefficiency in fertilizer 

application might relatively easy to be fixed by gradually reducing the fertilizer consumptions. But this inef-

ficiency needs to be assessed before such reduction is going to be implemented since this might have a 

negative impact on the national food security. Furthermore, if the soil has been degraded, conservative 

land management strategies need to be implemented to regain the soil health, but this also requires inten-

sive and integrated land resources assessment. Traditional laboratory analysis methods, which have been 

done for the past decades, might produce higher precision data as the basis for the assessment, but only 

covers plot at the smaller scales of analysis and were not be able to be conducted periodically due to its 

expensive costs; therefore, it is not suitable for regular monitoring at the national scale. VNIRS, at the oth-

er hand, although might be less accurate compared to the laboratory analysis, offers high throughput data 

with simpler analysis (Viscarra-Rossel et al., 2009), and therefore is a potential method as the cost-

effective solution for continuous land resources assessment at the national scale to support agricultural 

nutrient management. 
 

a The rate is the slope of the linear regression line of the annual ratio of the fertilizer consumption per hectare of the cropland 
(                    ). This ratio was calculated by multiplying the ratio of the annual total fertilizer consumption to the food crops produc-
tion with the annual average of croplands productivity (paddy and maize only). 
b This is rough approximation (                   ), and cannot be referred as the exact number of the ratio of the fertilizer requirements 
per ton of food crop production. This number was calculated based on the total annual production of paddy and maize only, which 
represent more than 90% of the total domestic production of food crops in Indonesia.  
 

Methodological Implementation of VNIRS for Agricultural Land Resources Monitoring 

 In the agricultural field, the main goal of nutrient management is to efficiently use soil amendments 

for maintaining soil quality to enhance land productivity (Brady and Weil, 2008). Nutrient requirements can 

be determined by interpreting the status of the soil properties and observing the pattern of the nutrient 

balance over the growing periods. As an indirect method, VNIRS calibration model needs to be developed 

before it can be integrated into spatial and temporal soil monitoring processes (Stenberg et al., 2010). This 

model is developed based on the known sample properties, to predict soil status as a function of the soil 

spectrum wavelengths. Therefore, three steps to implement VNIRS for nutrient management in the agricul-

tural land include (1) soil spectral database development, (2) calibration model development, and (3) 

VNIRS implementation for soil monitoring. 
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Soil Properties and Spectral Database Development 

 The soil spectral database consists of two soil dataset that includes the soil spectral data (predictor) 

and the soil properties data (predicted). For model development, soil spectrum is measured both at the 

laboratory and the location (in situ). The differences between these two measurements need to be approxi-

mated since soil monitoring is going to be performed in situ using model that is developed in the laborato-

ry. The use of laboratory spectral measurement in the model development is preferable since it generally 

has a better signal to noise ratio. Furthermore, the predicted parameters for soil nutrient management in-

clude not only soil macro and micronutrients status, but also soil properties for soil characterization that 

includes organic matter (carbon), mineralogy, and clay content (Brown et al., 2006). During this phase, 

however, the cost of the analysis is higher compared to the traditional soil analysis, due to the additional 

spectral parameter measurements. But in the long run, this cost will be significantly reduced, since the la-

boratory analysis will be unnecessary. 

 To model the broad variation of the soil information at the national scale, sample variations needs to 

represent all of the population (Foley et al., 1998). But, the number of the sample included needs to be 

limited so that the database development is cost effective. Therefore, two strategies are available for data-

base development, including (1) utilization of freely available global soil spectral library, and (2) the devel-

opment of new Indonesia spectral library. The first strategy is the most cost-effective method that can be 

implemented during the initial stage of the VNIRS application. A global spectral library that contains 785 

soil profiles with 102 unique locations from Indonesia (soil sampling period 1980-1992) is available for free 

download at the International Soil Reference and Information Centre (ISRIC) websites (International Coun-

cil for Research in Agroforestry, 2013). However, this dataset might yield calibration model with low predic-

tion performance considering the lower number of the available samples and the data year that might not 

represent current soil condition. Further improvement can be expected by spiking this dataset with new 

representative soil samples. This technique, therefore, might yield model with considerable prediction per-

formance, while maintaining the lower cost of the required analysis. 

 The second strategy is the ideal method for VNIRS application and is expected to yield calibration 

model with the best prediction performance. But this method is resource demanding due to intensive tradi-

tional laboratory analysis requirements. Soil sampling strategy is therefore required to reduce the cost of 

the analysis. Stratified random sampling is one of the sampling strategies. Using this technique, Indonesia 

region can be classified into map units using Geographical Information System (GIS) technique, based on 

the soil forming factors that are relatively stable over longer time periods (longer than human periods), 

from which random samples can then be collected. These factors include the soil classification information 

(ex. soil taxonomy), topographic properties (ex. altitude, slope, landform), ecological characteristics (ex. 

climatic zone, historical land use), and parent materials (Grunwald et al., 2011). For Indonesia region, this 

factors can be retrieved either from the freely available global dataset (Ellis et al., 2010; Hartmann and 

Moosdorf, 2012; Hengl et al., 2016; Jarvis et al., 2008; Kottek et al., 2006), or from the available national 

geospatial dataset from the past land monitoring projects (Indonesia soil, topographic, climate, land use, 

and geologic maps).  
 

Calibration Model Development 

 Two steps on the calibration model development include data preprocessing and chemometrics. Data 

preprocessing is performed mainly to improve the data quality so that it is more interpretable, but without 

changing the original data structure (Wehrens, 2011). Basic data preprocessing, such as data transfor-

mation, centering, scaling, and normalization, can be applied to soil properties data, but more advanced 

techniques need to be performed to dealing with soil spectral data (Varmuza and Filzmoser, 2009). Exam-

ple problem with VNIRS data includes spectrum noises due to instrument reading limitation and/or spectral 

offset that is caused by scattering effect (Wehrens, 2011). Furthermore, common techniques for spectral 
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data smoothing and offsetting include the running mean/median, Savitzky-Golay filter, first and second de-

rivatives calculation, continuum removal technique, and/or combination of these techniques (Savitzky and 

Golay, 1964; Varmuza and Filzmoser, 2009; Viscarra-Rossel et al., 2009; Wehrens, 2011). The application 

of data preprocessing before calibration processes has been proven to improve the resulted model predic-

tion performance (Vasques et al., 2008). An important aspect of chemometrics is the application of statisti-

cal multivariate data analysis for chemistry-related problem solving (Varmuza and Filzmoser, 2009). There-

fore, multivariate data analysis is used to identify the type of molecular bond from a series of soil spectrum 

measurement, so that the status of the related soil properties can then be quantified. Some popular meth-

ods that have been proven to yield calibration model with relatively high prediction performance include 

partial least square regression (PLSR) (Knox et al., 2015; Vasques et al., 2010, 2009, 2008; Viscarra-Rossel 

et al., 2009, 2006), principle component regression (PCR) (Chang et al., 2001), regression tree (Brown et 

al., 2006), and random forest (Knox et al., 2015). Furthermore, for VNIRS, Savitzsky-Golay derivatives and 

PLSR are considered to be a combination of data preprocessing and multivariate technique that yields rela-

tively high and stable prediction performance (Vasques et al., 2008), hence, are the candidate for calibra-

tion model development.  
 

VNIRS Implementation Strategy for Agricultural Land Resources Monitoring in Indonesia 

 Two different approaches are proposed for VNIRS implementation. The soil database and spectral 

library are developed using a centralized system to simplify the data management and model development 

processes. Therefore, data and the calibration model are disseminated to the land managers through a top-

down approach. The soil monitoring processes, at the other hand, are applied in a distributed manner, us-

ing a bottom-up approach. Sampling is performed by the land managers, where the data is then uploaded 

into the database. Implementation of in situ measurements, to reveal the status of particular soil properties 

at specific times (ex. before and/or after fertilizer application during the crop growing period), which is 

equipped with a geographical positioning system (GPS), are preferred whenever the cost of the implemen-

tation is reasonable. This method directly connects the central database to the farmer fields, so that land 

managers can then use the model directly to guide in the nutrient management, while at the same time 

scanning the samples where the data are automatically uploaded to the central database. Alternatively, if 

the cost of the instrumentation is too high, a secondary spectroscopy laboratory network can be developed 

at the provincial level, which serves as a bridge between the central database and the land managers. Soil 

samples are collected by land managers and sent to this laboratory, where data samples are processed, 

uploaded, and interpreted; and the results are sent back to the land managers. This alternative method 

might introduce delays, due to additional time to send, process the samples, and disseminate the results; 

but significantly reduces the implementation cost. Furthermore, the implementation of this monitoring sys-

tem should follow the existing agricultural institutional network. Currently, there is about 25,000 agricultur-

al extension personnel that potentially become the land managers (Indonesia Ministry of Agriculture, 

2016). This personnel are distributed over 34 provinces and have the advantage of having a direct relation 

to the local farmers.  

 Another important aspect in VNIRS implementation for agricultural land resources assessment is the 

identification of representative locations for periodical soil monitoring. This location should be located in the 

area with similar soil forming factors and land managements. For nutrient management of the annual 

crops, this observation is particularly important to understand the nutrient balance over the growing period 

and its relationship with the land productivity. Furthermore, continuous soil monitoring at the same repre-

sentative locations also opens the possibility to extend the analysis for agricultural decision support system 

at the national scale.  
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CONCLUSION 

Spectroscopy, especially VNIRS, has been proven to be a cost-effective method for soil status monitoring. 

Particularly in the agricultural field, this method offers continuous and in situ observation of nutrient bal-

ance as an important information for land management; therefore, is potential to be integrated into agricul-

tural land resources assessment in Indonesia. As an indirect method, VNIRS requires calibration model to 

be developed before its implementation. Furthermore, this model development requires the support from 

representative samples that covers overall population variations. The resulted calibration model should then 

be disseminated to and used by the land managers to generate information about soil property status over 

particular growing time period, and then to guide the croplands nutrient management.  
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