PENGARUH KONSENTRASI GARAM DAN LAMA PENGGARAMAN TERHADAP DAYA AWEI IKAN TEMBANG (Sardinella fimbriata)

Luthfie Hutuely
Penetiti BPIP Maluku

Abstract

ABSTRAK Suatu percobaan penggaramon ikan sebagai salah satu alternatif cara pengawetan bahan baku pengolahan telah diakukan untuk mempelajari pengaruh konsentrasi garam dan lama penggararnan terhadap dayo awet ikan tembang (Sardinella fimbriata'. Hasil percobaan menunjukkan bahwo dengan perlakuan konsentasi garam 30% dupat diperoleh daya awet ikan tembang yang lebih baik dibandingkan konsentrasi garam 20%, ikan tembang yang digarami dengan perlakuan konsentrasi garam 20% dan 30% selama 10 nari mempunyai daya awet rata-rata organoleptk linsang, mata. daging, bau, tekstur) berkisar antara $6.10-7,70$, sedangkan kadx garam $\mathrm{NaCl} 6.68-30.42 \%$ (bk), kadar air $48,50-73,57 \%$ (Db). TVB $19,47-48.11 \mathrm{mg} \mathrm{N} \mathrm{\%}$ dan $\mathrm{pH} 5,98-6,72$. Kata Kunci : konsentrasi garam, lama penggaraman, daya awet,organoleptik, ikan fembang.

PENDAHULUAN

Ikan tembang (Sardinelia fimbriata) termasuk salah satu jenis ikan ekonomis penting di Indonesio. Produksi hasil tangkapannya melimpah terutamo pada saat-saat musim puncak sehingga terkadang menimbulkan permasaiahan dalam penanganan pasca panen di mana sebahagian hasil tangkapannya tidak dapat ditangani secara baik. Hal mana mengakibatkan kerugian bagi nelayan karena hasil tangkapannya cepat mengaiami penurunan daya awet bahkan dapat membusuk dan terbuang.

Berbagai usaha telah dilakukan untuk mengurangi kerusakan atau pembusukan ikan tersebut. misainya dengan cara perbaikan penanganan bahan mentah, diversifikasi pengolahan dan penggunaan bahon pengawet. Namun usaha-usaha tersebut sangat terbatas dan umumnya masih bersifat tradisional serta hasilnya belum memuaskan. Salah satu uscha pengolahan tradisional yang paling banyak dilakukan oleh nelayan adalah penggaraman ikan, baik di atas kapal maupun setelah pendaratan hasil tangkapan. Menurut Moelyanto (1982), usaha penggaraman ikan di indonesia masih banyak dilakukan oleh nelayan untuk menowetkan hasil tangkapannya karena prosesnya sederhana dan bahan bantu (garam) yang digurakan masih fergolong murah dan mudah diperoleh.

Di sisi lain terjadi persaingan dalam memperoleh bahan baku (bahan mentah) ikan segar untuk berbagai kebutuhan seperti suplai ikan segar untuk konsumsi masyarakat maupun untuk kebutuhan industri pengolahan. Bahan baku ikan bergaram merupakan salah satu bahan baku produk setengah jadi yang dihasikan dani proses penggaraman oleh nelayan sebagai usaha pengawetan hasil tangkapan daiam jumlah yang cukup besar. Rahmatika (1981) dan Sukresno (1995) mengernukakan bahwa penggaraman ikan di kapal sebagion besar dilakukan oleh neloyan kecil yang menggunakan kapal layar atau kapal motor purseiner 5-10 GT dalam operasi penangkapan yang bertangsung selama 2-3 atau $9-10$ hari. Menurut Clusac dan Basmal (1995), dari jumlah hasil tangkapan yang didaratkan di tiga TPI di pantai utara Jawa terdapat sekitar $30-50 \%$ berupa ikan bergatam yang tidak dapat dipasarkan sebagai ikan kansumsi atau bahan baku untuk proses pengolahan produk lain seperti pembokuan, pengalengan dan pengasapan ikan.

Bertolak dari utaian di atas, maka telah dilakukan suotu venelitian percobaan penggaraman kan tembang sebagai salah satu altematif usaha pengawetan ikan untuk bahon baku beberapa jenis produk olahan ikan. Penelitian ini bertujuan untuk melihai pengaruh kansentrasi garam dan lama penggoraman terhodap daya awet ikon tembang.

BAHAN DAN METODE

Bahan dan Alat

Bahan boku yang digunakan adalah ikan tembang (Sarcinella fimbriata) segar berukuran $8-10 \mathrm{~cm}$ yang diperoleh dari nelayan di kabupaten Subang - Jawa Borat. Bahan bantu yang digunckan terairi dari es, garam rakyat (kadar $\mathrm{NaCl} 90.27 \%$) dan bahan-bahan kernia untuk anlisis laboratorium seperti asam borat, HCl , trichloroacetic acid (TCA). phenoptalein, AgNO 3 , dietll eter, $\mathrm{H} 2 \mathrm{SO}_{4}$, dan ain-tain.

Peralatan yang digunakan antara lain terdiri dari kotak stirofoam, ember plastik. keranjang plastik. timbangan dan peralotan laboratorium seperli erienmeyer, ge os piala, gelas ukur. cawan Conwcy, pipet. buret, dan kin-tain.

Metode Penelifian

Penelifian ini didesain menuruf rancangan acak lengkap (RAL) pola faktorial 2×6 dengan dua kali ulangan (Steel and Iomie, 1991). Sumber keragaman terdiri dari periakuan konsentrasi garam (A) yakni konsentrasi garam 20% (A1) dan 30% (A2) serta perlakuan lama penggaraman (B) yaitu lama penggaraman 0 hari (BO). 2 hari (B 1). 4 hari $(\mathrm{B} 2) .6$ hari (B 3). 8 hari (84) dan 10 hari (B 5).

Parameter daya awet yang diomati terdiri dari parameter organoleptik (insang, mata, daging, bau, tekstur! can obyektif (kadar garam $\mathrm{NaCl}, \mathrm{kadar}$ air, TVB, pH.). Penilaian organoleptik dilakukan oleh panelis dengan menggunakan skor sheef organoleptik ikan basah (segar). Pengukuran kadar garam NaCl , kadar air, TVB dan pH masing masing cilakukan menurut metode Volhard. oven, Conway, dan pH meter digital (Haseguwa. 1987).

Prosectur Penelitian

Kkan tembang (Sardinella fimbriata) yang diperoleh dari nelayan di Subang dicuci bersih dan dimasukkan ke dalam kotak stirofoam sambil ditambankan lapisan hancuran es secara bergantian dengan lapisan ikan (perbandingan berat ikan dan es 2 : 1). Setelah itu kotak stirofoam ditutup rapat dan diangkut ke laboratorium Bolai Bimbingan Daya awet Hasil Perikanan (BBMHP) di Jakarta (Muara Baru). Setibanya di laborotorium BBMAH, kan ofcuci bersih dan ditiriskan kemudian dibagi menjodi 2 kelompok perlakuan penggaraman (A1 dan A2) dengan masing-masing kelompok teraiti dari 6 perlakuan lama penggaraman [80, B1. B2, B3. 84, B5]. Penggaraman dilakukan dalam trays dengan cara pemberian garam secara berlapis-lapis bergantian dengan lapisan ikan. Dilakukan pengamatan ternadap daya awet kesegaran ikan sesuai waktu/lamo penggaraman yong telah ditentukan, seperti yang terlihat pada Lampiran I.

HASIL DAN PEMBAHASAN

Kadar Garam NaCl

Hasil analisis sidik ragam (Lampiran 2) menunjukkan bahwa perlakuan konsentrasi garam, lama penggaraman dan interaksi berpengaruh nyata ($\mathrm{P}<0,05$) terhadap kadar garam NaCl . Selama proses penggaraman, kadar garam NaCl ikan (bk) umumnya meningkat, baik pada kansentrasi garam 20% maupun 30% seperti terihat Gambar I. Peningkatan kadar gararn ikan secara nyata terlihat pada lama penggaraman 0 hingga 4 hari. Hal ini disebabkan terjadinya penetrasi gararn ke dolam daging ikan yang dipengaruhi oleh perbedaan konsentrasi larutan garam yang terbentuk di luar daging dengan larutan di daiam daging ikan. Proses pembentukan larutan garam di luar daging ikan diawali dengan penarikan air dari dalam daging sehingga. terbentuk larutan gafam yang pekat. Dengan kepekatan larutan garam tersebut menyebabkan tekanan osmotik larutan garam menjadi lebih tinggi dari pada larutan a dalam jaringan sehingga terjadi penetrasi gararn secara osmose.

Gambar 1. Ferubahan Kadar Garam NaCl lkan Tembang Selarna Proses Penggaraman.
Semakin finggi perlotuan konsentrasi garan (30%) yang diberikan pade kon dalam waktu tetentu, maka larutan garam yang ferbentuk akan semakin banyok dan lebih pekat darl poda larutan yang terbentuk dari konsenifasi garam rendah (20%) sehingga akan mengakibatkan besarnya penetrasi garam ke cialam daging. Dengan demikian terjadi perbedaan kadar garam NaCl yang dipengaruhi olan pertakuan konsentrasi goram podo lama penggarmnan 2 hingga 4 hari. Sedangkan pada lama
penggaraman 4 hingga 10 hari, peningkatan kadar garam NaCl pada masing-masing perlakuan konsentrasi garam tidak berbeda nyata. Hal ini berarti pada selang waktu penggaraman tersebut sudah terjadi keseimbangan larutan garam di luar dan di dalam daging ikan pada masing-masing kansentrasi garam sehingga tidak terjadi perubahan kadar garam NaCl yang berarti, namun besarnya kadar garam NaCl pada ikan tetap dipengaruhi oleh konsentrasi garam. Oleh karena itu pada. selang waktu 4 hingga 10 hari, kodar garam NaCl di dalam daging ikan berbeda untuk setiap perlakuan konsentrasi garam.

Kadar Air

Dari hasil anaisis sidik ragam (Lampiran 3) menunjukkan bahwa periakuan konsentrasi garam, lama penggarmnan dan interaksi memberikan pengaruh nyata ($P<0,05$) tertadap kadar air. Kadar air ikan pada kombinasi perlakuan A1BO maupun A2EO berbeda nyata dengan kombinasi-kombinasi lainnya. Kombinasi A282 tidak berbeda nvata dengan 1283 , A234 dan A285 sedangkan A1B2 tidak berbeda nyata dengan AIB3, A1B4 dan AIB5. Hal ini berarti bahwa pada perlakuan konsentrasi garam 20 \% maupun 30%, kadar air konstan dari lama penggaramar, 4 hingga 10 hari. Sedongkan dari kombinasi A1B2 hingga A1B5 berbeda nyata dengan A2B2 hingga A225. Ini menunjukkan bahwa periakuan kansentrasi garam 20% dan 30% berpengaruh nyata terhadop kodar air pada lama penggaraman 4 hingga 10 hari.

Selama proses penggaraman, kadar air ikan cenderung menurun, boik. pada perlakuan konsentrasi garam 20 \% maupuri 30% (Gambar 2). Penurunan kadar air ini secara nyata terihat pada loma penggaraman 0 hingga 4 hari dimana disebabkan deh penetrasi goram ke dalam jaringan daging ikan sehingga terjodi pengeluaran air dari tubuh ikan. Sedangkan air yang keluar dapai melarutkan garam di sekeliing tubuh ikan sehingga lerbentuk larutan garam yang pekat. Dengan kepekatan larutan garam yang berbeda pada periakuan konsentrasi gararn 20 dan 30% menyebabkan garam yang berpenetrasi ke dalam dagingpun berbeda. Dengan demikian terjad: perbedaan kadar air di dalam daging korena denaturasi protein mengakibaikan kehlaugan daya ikat air sehingga air lebih mudah keluar dari jaringan ikan. Menurut Molyanto (1982) banyaknya air yong keluar dari tubuh ikan dpengaruhi oleh konsentrasi garam yang diberikan pado iken, dimana semakin tinggi konsentrasi garam maka semakin cepal dan banyaknya air yang keluar.

Pada lama penggaraman hari ke-4 hingga ke-10 terjadi perubohan kadar air, namun tidak berbeda nyata. Hal ini menurijkkan bahwa perubahan kacar air pada selang woktu penggaraman tersebut disebabkan tekanan osmotik larutan di daiam dan ai luar daging ikan sudoh konstan. Dengan demikian pertukaran iarutan dari diclam cian fuar daging atou sebalkanya terus berlangsung apabila terjadi perbedaan kepekatan garam dan tekonan osmotik

Gamba: 2. Perubahon Kodar Air kian iembarig Seiama Proses Penggaraman.

Abstract

Nilai TVB Dari husi arialisis sidk ragam pada tampian \& menunjukkor bahwo konsentrasi garam, lama Denggarmnan dan interaksi berpernatuh nyyta \& C 0.05 \} termucop niloi TVB. Dari Yil BNI terdiopat interaksi antaro konsentrast goram dengon lama penggaraman climana niki TVB-N kan dengon komtinasi AIBO maupun $A 220$ fidak berbeda nyoic dengan $A 2 B 1$, sedangken $A 28$; berbeda nyaio dengan A 223 , A2B4. $A 7 B 5$. $A 183$. $A 1 B 4$ dan $A 185$, Unfuk kormbinasi $\triangle 2 B 2$ ficiak berbeda nycra dengan $A 283$, A284, A285 A182. dan AlB3. Secfangikan parlu kombinosi Ais2 joaak bevbeda nyata dengon AlB3, nammi Derbeda nvota

dengan A1B4 dan A185. Hal ini berarti bahwa pada konsentrasi garam 30%, nilai TVB cendenmg kanston dari lama penggarmnan 4 hingga 10 hari. Sedangkan pada konsentrasl garam 20% terjadi peningkatan TVB secara lambat setelah penggaraman 4 hari (meningkat dengan nyata setiap selang waktu 4 hari). Dari kombinas: A2B4 berbeda nyata dengan A1B4 dan A2B5 berbeda nyata dengan A1B5. Hal ini berarti konsentrasi garam 20 \% dan 30 \% memberikan pengaruh nyata terhadap nilai TVB pada lama penggaraman 8 hingga 10 hari.

Selama proses penggaraman, nilai TVB ikan cenderung meningkat, baik pada perlakuan konsentrasi garam 20% maupun 30% (Gambar 3). Peningkatan nilai TVB ikan secara nvata terlihat dari lama penggaraman 0 hingga 6 hari. Hal ini disebabkan adanya penguraian protein oleh enzim autolitik dari pencernaan dan katepsin dari jaringan daging leblh cepat dari pada penetrasi garam ke dalam daging sehingga nilai TVB meningkat. Moelyanto (1982) mengemukakan bahwa proses masuknya garam membutuhkan waktu yang dipengaruhi antara lain oleh konsentrasi garam. kesegaran, ukuran dan kadar lemak ikan. Namun bila difihat dari perbedaan nilai TVB yang dihasikan dari kedua periakuan konsentrasi garam pada selang woktu tersebut, penetrasi garmn sudah mempengaruhi denaturasi protein, walaupun tidak optimal. Pada perlakuan konsentrui garam 30%, penetrasi garam lebib besar dari pada perlakuan konsentrasi garam 20 \% sehingga menyebabkan protein yang terdenaturasi juga lebih besar. Dengan demikian secara tidak langsung mempengaruhi hasil penguraiannya sehingga nilai TVB lebih rendah. Menurut Zaitsev et al. (1969), teriadinya penguraian protein menjadi anionlak, trimethilamine, dimethyl dan senyawa siclic disebabkan oleh aktivitas enzim, yang mengakibatkan terjadinya peningkatan TVB.

Grmbar 3. Perubahan TVB Ikan Tembang Selama Proses Penggaraman.
Pada lama penggaraman 6 hingga 10 hari, perubahan TVB ikan tembang tidak nyata pada setiap selang waktu penggaraman, baik pada perlakuan konsentrasi guram 20% maupun 30%. Namun pada perlakuan konsentrasi garam 20 \%, nilai TVB meningkat secara nyata dari lama penggaraman hari ke-4 hingga ke-10. Hal ini dipengaruhi oleh besamya garam yang berpenetrasi ke dalam daging ikan. dimana kadar garam NaCl pada selang waktu 4 hingga 10 hari cenderung konstan. Dengan demikian pada selang waktu tersebut, protein sudah terdenturasi yang dipengaruhi oleh kadar garam di dalam daging. Oleh kerena ifu pada konsentrai garmn 30%, penguraim protein di dalam daging ikan lebih mampu dihambat bilo dibandingkan konsentrasi garam 20% sehingga TVB yang dihasilkan menjadi lebih rendah dan tidak berbeda antara lama penggaraman hari ke-4 hingga hari ke-10. Menurut Zaitsev et al (1969). pada konsentrasi gararn tinggi. protein terdenaturasi (termasuk enzim) sehingga menvebabkm enzim kehilangan kemampuannya untuk menguraikan protein.

Nilai pH

Hasil analisis sidik ragam (Lampiran 5) menunjukkan bahwa lama penggaraman memberikan pengaruh nyata ($\mathrm{P}<0,05$) terhadap nilai pH . Dari uii BNJ (Lwnpiran 6) menunjukkan bahwa nilai pH pada lama penggaraman 0 hari, berbeda nyata dengan lama penggaraman $2,4,6,8$ dan 10 hari. Sedangkan lama penggaraman 2 hari berbeda nyata dengan larna penggaraman 4, 6,8 dan 10 hari. Namun pada lama perggaraman 4 hari fidak berbeda nyata dengan lama penggaraman 6, 8 dan 10 hari.

Semhor Nostonal hovasi Teknokgi Pertonion Berwawasan Agribienk Mendukuras Pembangunan Perim baik pada perlakuan konsentrosi
Selama proses penggaraman, nilai pH ikan cenderung men ikan secara nyata tenihat dari lama garam 20% maupun 30% (Gamber 4). Penurunan nilai pH anan 4 hingga 10 hari, perubahan pH ikan penggaraman 0 hingga 4 hari, sedangkan pada lama pengg pada lama penggaraman 0 hingga 4 hari tidak nyata pada ke dua konsentrasi garam. Penurunan aleh enzim autolitik menjadi asam karboksilat, diduga karena penguraian protein, karbohidrat dan temak terutama pada konsentrasi garam yang masih asam laktat dan asam lemak yang berlangsung lebinian ikan dirubah menjadi glikogen yang kemudian rendah. Menurut Sunarya (1989) glukosa pada jam suasana anaerobik. Sedangkan Yunizal (1976) dirubah kembali menjadi asam laktat dalamatkan teriadinya hidrolisis lemak menjadi asam lemak mengemukakan bahwa penurunan pH dapat ciakrbaksilat. Dengan demikan jumiah asam yang terbenfuk dan gissol serta hidrolisis protein menjadi asarn karba yang dihasilkan dari penguraian protein sehingga pH dari hasil penguraian ini masih melebihi jumlah basa yasam daging pada lama penggaraman 4 hingga 10 daging cenderung asam. Sedangkan konstannya tinggi sehingga dalam suasana daging yang asam hari diduga karena pemberion garam vang ahan garam tinggi (halofilik moderat) dapat berkembang menyebabkan bakteri pembentuk asam dan tahan gaman) Namun demikian pH lidak semakin rendah sedangkan bakteri halofilik yang lain tidak tumbuh /domanya penguraian asam lemak jika dibandingkan karena karbohidrat yang semakin berkurang dan renarti pada selang waktu tersebut didominasi oleh dengan penguraian protein. Dengan demikian bermun jumiah yang dihosilkan masih belum dapat penguraian protein yang menghasilkan basa, nain yang terurai oleh enzirr, sedangkan protein utuh meningkatkan pH karena terbatasnya jumlah prolei. Hanafiah (1987) mengemukakan bahwa selama sudah terdenaturasi dan sulit dipecankan bakken protein yang terpecah dibandingkan dengan protein penggaraman, bakleri lebih mampu meptidase dibandingkan proteinase. utuh karena lebih banyakuya enzim peptidase dibandingkan proteinase.

Nilal Organoleptik
Dari hasil analisis sidik ragam (Lampiran 6) menunjukkan bahwa konsentrasi garam. lama penggaraman dan interaksi berpengaruh nyata ($\mathrm{P}<0.05$) terhadap nilai organoleptik. Nilai organoleptik ikan pada kombinasi periakuan A1B0 maupun A2BO berbeda nyata dengan kombinosi perlakuan lainnya, Kombinosi A2R2 berbeda nyata dengan A2B4 dan A285, namun ka dengan A1B4 dan A1B5, tetopi A1B3 A2B4 dan A2B5. Sedangkan pada kombinasi A1B2 berbe pada perlakuan konsentrasi garam 30%, nilai ticak perbeda dengan A1B4. Hal ini berarti bahwa 6 hingga 10 hari, sedangkan pada pertakuan organoleptik cenderung konstan dari lama penggang menurun hingga lama penggaraman hari ke-10. konsentrasi garam 20 \% nitai organoleptik cenderug da nvata dengan A2B4 hingga A2B5. Ini berarti Pada kombinasi perlakuan A1B4 hingga A185 berbearuh nyata terhadap nilai organoleptik pada lama perkikuan konsentrasi garam 20% dan 30% berper baik pada pellakuan penggaraman 8 hingga 10 hari.

Selama proses penggoraman, niiai organcleptik ikan umumnyo menura baik pada dart hana konsentrai gorom 20% maupun 30% (Gambar 5). Penurunan periakuan konsentasi garam pada nila penggaramen 0 hingga th hai, sedangkan pengan 8 hingga 10 hari. Hal in berkaitan dengan organoleptik terlihat nyata pada lamc penggaraman s ing ina
perubahan nilai pH , TVB dan kadar garam NaCl pada masing-masing konsentrasi garam sehingga menyebabkan terjadinya perubahan penampakan organoleptik (insang, mata, daging, bau, tekstur) pada ikan.

Gambar 5. Perubahan Nilai Organoleptik Ikan Tembang Selama Proses Penggaraman.

Perubahan yang menyolok antara periakuan konsentrasi garam terjadi selelah 8 hari penggaraman, dimana nilai organoleptik ikan pada konsentrasi garam 20% lebih rendah dari pada konsentrasi garam 30%, karena pada perlakuan konsentrasi garam 20 \% mempunyai nilai pH dan kadar garam NaCl lebih rendah, sedangkan TVB lebih finggi dari perlakuan konsentrasi garam 30%. Dengan demikian pH yang rendah menyebabkan penampakan (insang, mata dan daging) benvarna merah keputihan, sedangkan IVB yang lebih tinggi menyebabkan bau amoniak atau TMA dan kadar garam yang rendah berpengaruh pada tektur ikan. Pada perlakuan konsentrasi garam 30% penampakan (insang, mata dan daging) juga barwarna merah keputihan, berbau ikan fermentasi dan tekturnya kompak, liat serta sedikit berair. Menunit Sunarya (1989) suasana asam pada jaringan daging akan berpengaruh terhadap reaksi biokimia lainnya karena merupakan kondisi yang baik bagi proses oksidasi hemoglobin menjadi methaimoglobin yang merubah wama merah ikan menjadi puda. Kondisi asam tersebut juga akan mempengaruhi protein menjadi terdenaturasi sehingga menyebabkan warna daging menjadi keruh. Yunizal (1976) mengemukakan bahwa bau ikan bergaram merupakan campuran TMA. amoniak, asam etanoat, butanoat dan metil keton. Menurut Moelyanto (1982), dengan berkurangnya air dalam daging ikan selama penggaraman akan menyebabkan protein terdenaturasi dari jaringan daging menjadi kampak don padat.

KESIMPULAN

Perlakuan konsentrasi garam (A) dan lama penggaraman (B) serta interaksi antara kedua periakuan (AB) sangat berpengaruh terhadap daya awet ikan tembang. Perlakuan konsentrasi garam 30% (A2) menghasilkan daya awet ikan tembang yang lebih baik dibandingkan perlakuan konsentrasi garam 20 \% (A1). Semakin lama proses penggaraman mengakibatkan perubahan nilai kadar garam NaCl dan TVB semakin meningkat, sedangkan nilai kadar air. pH dan organoleptik cenderung menurun dimana sampai akhir proses penggaraman pada hari ke-10 daya awet ikan tembang masih tergolong baik.

Daya awet ikan tembang dari kedua perlakuan konsentrasi garam 20% dan 30% terhadap parameter arganoleptik (insang, mata, daging, bau, tekstur) berkisar antara 6,10-7,70 hari, sedangkan kadar garam $\mathrm{NaCl} 6.68-30.42 \%$ (bk), kadar air $48,50-73.57 \%$ (bb). TVB $19.47-48.11 \mathrm{mg} \mathrm{NF}$ dan pH 5.98-6.72.

DAFTAR PUSTAKA

Clucas, 1. J. dan J. Basmal. 1995. Pengolahan, Distribusi đan Pemasaran ikan Pelagis Kecil dari Tiga Tempat Pendaralan Ikan di Jawc Tengah. Inconesia. Dalam : Proseding Seminar on Socio-Economic, Innovation and Management of The Small Pelagic Fishery of The Java Sea. Bandungan. Ditjen Perikanan. Departemen Pertanion.
Hanafiah. T. A. R., 1987. Factors Affecting Quaity of Pedah Siam. Thes's, University of Warhington.
Hasegawa, H., 1987. Laboratory Manual Analitycal Methods and Procedures for Fish and Fish Product. Marine Fisheries Research Departemen Southeast Fisheries Development Center, Singapore.
Moelvanto. 1982. Penggaraman dan Pengeringan Ikan. P.T. Penebar Swadayo. Anggota IKAPI, Jakaria.
Rochmatika, L. 1981. Pengaruh Penggaraman Bahan Mentah Terhadap Ketahanan Hasil Pindang Layang (Decopterus sp). Karya limiah, Fokultos Perikanan, institut Pertanion Bogor, Bogor.
Steel, R. G. D. dan H. Torrie, 1991. Pinsip, dan Prosedur Statistikc. Gramedia Pustoka Umum, Jakarta.
Sulrosno. A. 1995. Potensi Sumberdava Perikanan Sebagai Penghasil "Omega-3", Dalam: Proseding Seminar Hasil Penelifian Perikanan, Pusat Penelitian dan Pengembangan Perikanan, Depatemen Pertanian, Jakarta.
Sunarya, 1989. Proses Kemunduran Daya awet Hasil Perikanan. Baiai Bimbingan dan Penguian Daya awet Hasil Perikanan. Direktorat Jenderal Perikanon, Jakarta.
Yunizal. 1976. Mikrobiologi Pembusukan Produk-produk Perikanan, Akaderni Usaha Perikanan, Jakarta.
Laitsey, V., I. Kisevetter, I. Logunav, T. Makarova. L. Minder. 1969. Fish Curing and Pocessing. MIR Pubished, Moskow.

LAMPIRAN

Lampiran 1. Rekapitulasi Hasil Pengamatan Daya Awet lkan Tembang Selama Penggoraman

Kode Periakuan	Nilai Rata-rata Parameter Daya awet likari Tembong				
	Organoleptik	$\begin{gathered} \text { K.Garam } \mathrm{NaC} \\ (\% 6 \mathrm{Ok}) \end{gathered}$	Kadar Aír (\% ob)	$\begin{gathered} T V B \\ (m g N \%) \end{gathered}$	PH
$\begin{array}{r} \mathrm{A} 180 \\ \mathrm{~B} 1 \end{array}$	7,70 7.35	0,68	73.57	19,47	6.72
$\begin{aligned} & 81 \\ & 82 \end{aligned}$	7.35 6.84	18.68	65.12	30.14	6.33
83	6.52	22.79	58.20	36.74	602
84	6,25	21,46 20,75	56.64 55.25	41.20 44.50	5.97
85	610	20,48	5725	48.11	5.98
+280	7.70	0.68	73.57	19.47	
B1	7.10	24.10	62,10	28.22	691
62	6,90	32,5!	49.57	34,12	611
83	6.74	30,53	49.11	34.33	6.05
R4	6.52	30.69	48.50	33,80	-0, 03
85	6,45	30,51	51.36	34,72	8.02

$80,1,2,3,4,5=$ Lama penggaromon $0,2,4,6,8$ dan 10 hari
Lampiran 2. Anaiisis Sicik Ragam Kadar Garam NaCl Ikan Tembang Eergcram

SK	$d \mathrm{~b}$	JK	KT	Fh	$F 0.05$
Kons. Garam (A)	1	323.841	323.841	1476.50°	3.49
Lama Penggrmn (B)	5	2096,5	410.30	1911.87°	3.00
Interaksi $(A B)$	5	79.687	1.9375	72.66°	3.00
Galat	12	2.632	0.2193		

Lampiran 3. Analisis Stifik Ragam Kadar Air kan Tembang Bergaram

SK	Cib	JK	KT	Fi	10.05
Kons. Goram (A)	1	167,69	167,69	$54,69^{*}$	3,49
Lama Penggrmn (B)	5	1472,15	294,43	$96,02^{*}$	3,00
Interaksi $(A B)$	5	52,15	10,453	$3,41^{*}$	3,00
Galat	12	36,79	3,066		

Lampiran 4. Analisis Sidik Ragam TVB Ikan Tembang Bergaram

SK	Cb	JK	KT	Fh	F0,05
Kons.Garam (A)	1	224,482	224,482	$31,89^{*}$	3,49
Lama Penggrmn (B)	5	1290,76	258,153	$36,68^{*}$	3.00
Interaksi (AB)	5	160,162	32,0325	$4,55^{*}$	3,00
Galat	12	84,462	7,0385		

Lampiran 5. Analisis Sidik Ragam pH lkan Tembang Bergaram

SK	db	JK	KT	Fh	F0,05
Kons.Garam (A)	1	0,00167	0,00167	0,003	3,49
Lama Penggrmn (B)	5	1,935	0,387	$80,64^{*}$	3,00
Interaksi $(A B)$	5	0,0387	0,0074	1,61	3,00
Galat	12	0,0576	0,0048		

Lampiran 6. Analisis Sidik Ragam Nilai Organoleptik Ikan Tembang Bergaram

SK	db	JK	KT	Fh	F0,05
Kons.Garam (A)	1	0,661	0,661	6,58	3,49
Lama Penggrmn (B)	5	5,87	1,1744	116,86	3,00
Interaksi (AB)	5	2,33	0,466	4,64	3,00
Galct	12	0,121	0,01006		

