
Prediction of drought impact on rice paddies in West Java ... (Elza Surmaini et al.)  21

PREDICTION OF DROUGHT IMPACT ON RICE PADDIES IN WEST JAVA
USING ANALOGUE DOWNSCALING METHOD

Prediksi Dampak Kekeringan pada Tanaman Padi Sawah di Jawa Barat
Menggunakan Metode Downscaling Analog

Elza Surmainia, Tri Wahyu Hadib, Kasdi Subagyonoc and Nanang Tyasbudi Puspitob

aIndonesian Agroclimate and Hydrology Research Institute

Jalan Tentara Pelajar No. 1A, Bogor 16111, West Java, Indonesia, Phone +62 251 8312760

Fax. +62 251 8312760, 8336757, E-mail: balitklimat@litbang.pertanian.go.id
bFaculty of Earth Sciences and Technology, Bandung Institute of Technology

 Jalan Ganesa No. 11, Bandung 40132, West Java, Indonesia
cIndonesian Agency for Agricultural Research and Development

Jalan Ragunan No. 29 Pasarminggu, South Jakarta 12540, Indonesia

 *Corresponding author: elzasurmaini@gmail.com

Submitted 28 October 2014; Revised 27 January 2015; Accepted 29 January 2015

ABSTRACT

Indonesia consistently experiences dry climatic conditions and

droughts during El Niño, with significant consequences for rice

production. To mitigate the impacts of such droughts, robust,

simple and timely rainfall forecast is critically important for

predicting drought prior to planting time over rice growing

areas in Indonesia. The main objective of this study was to

predict drought in rice growing areas using ensemble seasonal

prediction. The skill of National Oceanic and Atmospheric

Administration’s (NOAA’s) seasonal prediction model Climate

Forecast System version 2 (CFSv2) for predicting rice drought

in West Java was investigated in a series of hindcast

experiments in 1989-2010. The Constructed Analogue (CA)

method was employed to produce downscaled local rainfall

prediction with stream function (ψ) and velocity potential (χ)

at 850 hPa as predictors and observed rainfall as predictant. We

used forty two rain gauges in northern part of West Java in

Indramayu, Cirebon, Sumedang and Majalengka Districts. To be

able to quantify the uncertainties, a multi-window scheme for

predictors was applied to obtain ensemble rainfall prediction.

Drought events in dry season planting were predicted by rainfall

thresholds. The skill of downscaled rainfall prediction was

assessed using Relative Operating Characteristics (ROC)

method. Results of the study showed that the skills of the

probabilistic seasonal prediction for early detection of rice area

drought were found to range from 62% to 82% with an

improved lead time of 2-4 months. The lead time of 2-4 months

provided sufficient time for practical policy makers, extension

workers and farmers to cope with drought by preparing suitable

farming practices and equipments.

[Keywords:  Rice paddy, agronomic drought, probabilistic

prediction, statistical downscaling, analogue method]

ABSTRAK

Indonesia secara konsisten mengalami kondisi iklim yang kering

dan kekeringan selama kejadian El Niño, yang berdampak

terhadap produksi beras. Untuk mengurangi dampak kekeringan,

prediksi curah hujan yang akurat, sederhana, dan diterima tepat

waktu sangat diperlukan sebelum waktu tanam terutama di daerah

sentra produksi padi di Indonesia. Penelitian ini bertujuan untuk

memprediksi kekeringan agronomis di daerah sentra produksi

padi menggunakan prediksi musiman ansambel. Kemampuan

model prediksi musiman dari National Oceanic and Atmospheric

Administration (NOAA)-Climate Forecast System version 2

(CFSv2) untuk memprediksi kekeringan padi di Jawa Barat diteliti

menggunakan prediksi hindcast periode 1989-2010. Metode

Constructed Analogue (CA) digunakan untuk mendownscale

prediksi curah hujan lokal  dengan fungsi arus (ψ) dan potensial

kecepatan (χ) pada paras 850 hPa sebagai prediktor serta  curah

hujan observasi sebagai prediktan. Penelitian menggunakan

empat puluh dua alat pengukur hujan yang terdapat di bagian

utara Provinsi Jawa Barat, yaitu di Kabupaten Indramayu,

Cirebon, Sumedang, dan Majalengka. Untuk mengkuantifikasi

ketidakpastian, skema multi-jendela diaplikasikan dalam

membangun prediksi musiman ansambel. Kekeringan padi pada

musim kemarau diprediksi berdasarkan nilai ambang curah hujan.

Kemampuan prediksi curah hujan hasil downscaling dinilai

menggunakan metode Relative Operating Characteristics (ROC).

Hasil penelitian menunjukkan bahwa kemampuan prediksi curah

hujan musiman probabilistik dalam mendeteksi dini kekeringan

padi berkisar antara 62-82% dengan lead time 2-4 bulan. Dengan

lead time 2-4 bulan menyediakan waktu yang memadai bagi

pengambil kebijakan, penyuluh pertanian, dan petani untuk

menyusun strategi budi daya serta mempersiapkan sarana dan

prasarana pertanian yang antisipatif kekeringan.

[Kata Kunci: Padi sawah, kekeringan agronomis, prediksi

probabilistik, downscaling statistik, metode analog]

INTRODUCTION

Large areas of severe droughts occurred worldwide

and caused high economic and social costs. The

profound impact of the El Niño-Southern Oscillation

(ENSO) on the climate of Indonesia is well-known and
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causing drought over much of the country (Nicholls

1981; Harger 1995; Allan 2000). The Indonesian

Ministry of Agriculture (MoA) reported that during

the El Niño’s years, damaged rice areas due to

drought covered 350-870 thousand hectares, while

during the normal years were 17-340 thousand

hectares. Other studies indicated that El Niño

occurred in most of rice production areas during the

dry seasons (Alimoeso et al. 2002; Meinke and Boer

2002).  Moreover, West Java Province was found as

the most vulnerable province to El Nino’s during the

first and second dry season planting (DSP1 and

DSP2) (Surmaini et al. 2014a).

ENSO is a common indicator for the policy maker in

managing adaptation strategy to cope with climate

extreme events in many countries including

Indonesia. Several studies can predict rice production

in Indonesia in advance using the ENSO indices

(Kirono and Tapper 1999; Naylor et al. 2002). In more

detail, Falcon et al. (2004) concluded that the

changes in August Nino 3.4 index are particularly

significant on harvested rice area and rice production

throughout September-December and January-April

trimesters. However, these effects are likely to

diminish in May-August trimester, i.e., the peak

period of drought in rice areas. Surmaini et al. (2014a)

found that Niño 3.4 events in March and June are

useful for detecting the potential of drought impact

on rice during dry season planting. However, it is not

effective due to short lead-time (0-2 months).

Furthermore, the use of ENSO indices themselves is

difficult to be understood by non-expert users such

as practical policy makers, extension workers and

farmers. Practitioners need indicators fairly easy to be

understood and accessible. Rainfall is the most

important factor influencing the onset, duration and

severity of drought conditions (Lloyd-Hughes and

Saunders 2002; Msangi 2004; Sonmez et al. 2005).

Critical thresholds of rainfall  may be used as practical

indicator for predicting drought in rice areas

(Surmaini et al. 2014b).

As ENSO is not effective as indicator of rice area

drought, coupled Global Circulation Models (GCMs),

which have been known to exhibit reasonable skill in

predicting El Niño and related climate signal in 9

month lead time, may serve as better tools for

predicting rice area drought. The widely accepted

basis of GCM is the downscale of the roughly

resolved information to local scale. Downscaling is

expected to improve GCM output through enhan-

cement of the spatial resolution. Nowadays,

statistical downscaling provides several techniques

to use low resolution GCMs on regional or local scale

(Zorita and von Stroch 1999; Maraun et al. 2010).

This method links to the large-scale predictions of the

GCMs with simultaneous local historical observations

of the interest regions. Many authors pointed out the

potential benefits from this seasonal (Hansen and

Inez 2005; Meinke and Stone 2005) in particular, as

well as for regions where the impact of ENSO on the

local or regional climate is pronounced (Patt et al.

2007).

Predictions of weather and climate associate with

high uncertainties. According to Palmer (2006),

essentially there are three reasons why forecasts are

uncertain: uncertainty in the observations used to

define the initial state, uncertainty in the model used

to assimilate the observations and to make the

forecasts, and uncertainty in external parameters.

The level of uncertainty can be conveyed in a

quantitative way by using probabilities (Zwiers1996;

Kharin and Zwiers 2001). For model forecasts, the

level of uncertainty can be derived from an ensemble

of model forecasts (Doblas-Reyes et al. 2000; Palmer

et al. 2004). Owing to their ability to quantify the

uncertainty, probabilistic forecasts are of potentially

greater value to decision makers than deterministic

forecasts (Murphy 1977; Krzysztofowicz 1983).

This study aimed to predict drought of rice

production areas in the northern part of West Java

using ensemble seasonal prediction. This study is

motivated by the need of drought prediction for

DSP1 and DSP2. Local areas within this region

frequently experience extreme drought especially in

dry season. Also, West Java has the largest rice

growing areas in Indonesia. Development of accurate

seasonal rainfall prediction tools with high spatial

resolution is essential for mitigation of impacts.

MATERIALS AND METHODS

Experimental Sites

The study was conducted in the rice growing areas

in the northern part of West Java, i.e. in the Districts

of Indramayu, Cirebon, Sumedang and Majalengka,

which are vulnerable to drought (Surmaini et al.

2014a). These districts are located in Citarum

watershed.
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Data Collection

The observed multi-site rainfall data series of 1982 to

2009 were obtained from the Ministry of Public Work

and the Indonesian Geophysics, Climatology and

Meteorology Bureau (Fig. 1). MoA reported that

damages of rice crops due to drought mostly occur

during May to October. For that reason, our

investigation focused on DSP1 during March to May,

and DSP2 during June to August. These DSPs

associate with rice drought during May to July and

August to October, respectively.

The data used were the NOAA’s-CFSv2 seasonal

prediction model as predictor. The meridional (U) and

zonal (V) 850 hPa data for the periods of 1982-2009

followed Saha et al. (2014) at the http://nomads.ncdc.

noaa.gov/data/cfsr-frl-ts9/wnd850. The vector fields

of U and V 850 hPa data were decomposed into scalar

field of rotational stream function (ψ) and divergent

velocity potential (χ) components. According to

Palmer (1952), ψ and χ are used extensively in

meteorology and oceanography. Moreover, ψ and χ

are more suitable scalar variables for depicting flow

patterns than other variables in low latitudes, where

geostrophic balance breaks down as the Coriolis

parameter becomes small. These 9-month data were

initiated from every 5 days and run from all four

cycles of that day for 0, 6, 12 and 18 UTC, beginning

from January 1st  of each year, over a 28-year period

from 1982 to 2009.

Ensemble Members

Ensemble members comprised of multiple (5-100) runs

of numerical weather prediction models representing

initial conditions and/or the numerical representation

of the atmosphere of two major sources of uncertainty

data (Gneting and Raftery 2005). In this study,

ensemble is performed by ψ and χ at 850 hPa in multi-

windows monsoon regions and statistics of hindcast

run. Multi-windows of the monsoon’s regions used in

this study consisted of five indices, i.e. (1) the

Australian Monsoon Index (AUSMI): 5°S-15°S, 110°E-

130°E (Kajikawa et al. 2010), (2) the Western North

Pacific Monsoon divided into two regions, such as

5°N-15°N, 100°E-130°E and (3) 20°N-30°N,110°E-140°E

(Wang et al. 2001), (4) the Webster and Yang

Monsoon Index (Webster and Yang 1992) divided into

two regions, i.e. EQ-20°N,75°E-110°E and (5) EQ-20°N,

40°E-75°E (Fig. 2). CFSv2 released 9-month hindcasts

initiated from every 5 days and run from all four

Fig. 1. Locations of forty-two rain gauges of the study area in northern part of West Java as represented  by black dots.
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cycles of that day, beginning on January 1st of each

year, over a 29-year period from 1982 to 2010. We

used statistic of hindcast run, i.e. 3th quartile, mean

and 1st quartile as members. These components

performed 30 members for ensemble. CFSv2 was

employed for predicting droughts in the periods of

May-June (DSP1) and August-October (DSP2)

released in December and March, respectively.

Analogue Downscaling Method

The skill of NOAA’s seasonal prediction model

CFSv2 for predicting drought on rice areas in

northern part of West Java was investigated in a

series of hindcast experiments. The Constructed

Analogue (CA) method of van Den Dool (1994) and

Hidalgo et al. (2008) was applied to look for subset

analogues in a large scale field (supposed to be

reliably predicted by GCMs) and then use the local

target field simultaneous to the large scale analog to

reconstruct the local rainfall scale field (Zorita and

von Storch 1999). Hindcast data of ψ and χ of

NOAA’s  CFSv2 from 1982 to 2000 were used as a

library or pool of potential analogues and data from

2001 to 2009 were used to validate the downscaling

results. The procedure for using CA for prediction or

downscaling can be divided in two parts: diagnosis

and prognosis.

The diagnosis step consists of selecting a subset

of weather patterns from a large library of historical

patterns at low resolution and then determining the

multiple linear combination of those patterns that

best match the target pattern. We used 30 subsets to

form CA, considering previous researches indicated

that 30 subsets had optimal correlation coeffcient

(Hidalgo et al. 2008;  Syahputra 2013).

Empirical Orthogonal Function (EOF) was applied

to reduce the degree of freedom (d.o.f) on atmo-

spheric circulation fields used as predictors (Zorita

and von Storch 1999).  Predictor library  F(u) and

target  F(t) were  reduced to spatial component (c
k
)

and temporal component (a
k
) as described below:

MF (u) = Σ
k = 1

c(u)
k
a(u)

k
(1)

M
F (t) = Σ

k = 1
c(t)

k
a(t)

k
(2)

where M is the number of significant Principal

Components (PC).

The PC number was assessed using the scree plot

of eigenvalue to determine the appropriate number of

components. The component number is taken to be

the point at which the remaining eigen values are

relatively small and all about the same size (“elbow” in

the scree plot).

The prognosis step is the derivation of the high-

resolution pattern by applying the linear fit developed

from the subset of predictors. In this study we used

multiple linear regression  method (Fig. 3), which is

analogous search member as an independent variable

and rainfall observations (R) as dependent variable,

to obtain the regression coefficients {B
1
,B

2
,...,B

30
}

and a constant C. CA of target rainfall t (R
CA(t)

) then

can be calculated by equation as follow

30R
CA(t) 

Σ
n = 1

 B
n
R

n
 (t) + C (3)

Fig. 2. Multi-windows of monsoon areas used as predictor namely (1) Australian Monsoon Index, (2 and 3) Western North

Pacific Monsoon Index, (4 and 5) Webster and Yang Monsoon Index.
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To be able to quantify the uncertainties, a multi-

windows scheme for predictors was applied to obtain

ensemble rainfall prediction. Drought events are

predicted by rainfall thresholds which values are 20

mm in the first decade (10-day) of March for DSP1 in

irrigated rice field and 60 mm in the first  decade of

June for DSP2 in rainfed rice field (Surmaini et al.

2014b).

One of the key aspects of the analogue search is

the selection of the similarity measure to select the

past analogues (van den Doll 1994). Analogue search

was carried out using cosine similarity (Garcia 2006).

Cosine similarity is a measure of similarity between

two vectors by measuring the cosine of the angle

between them. The result is equal to 1 when the angle

is 0, and it is less than 1 when the angle is of any

other values. Degree of similarity between vectors

)(ua
r

and

)(ta
r

is calculated using equation as follows

)(ua
r

.

)(ta
r

S(u) =  (4)
|

)(ua
r

||

)(ta
r

|

For each target of time t a set of analog predictors

in the database and predictant paired were selected

based on the similarity value S(u).

Verification of Rice Drought Prediction

The skill of probabilistic prediction of drought on rice

field was measured using Relative Operating

Characteristic (ROC) curve. ROC curve is a useful

method representing the quality of deterministic and

probabilistic detection and forecast systems.  The

area under the ROC curve characterizes the quality of

a forecast system by describing the system’s ability

to anticipate correctly the occurrence or non-

occurrence of pre-defined ‘events’. In constructing a

ROC curve, forecasts are expressed in binary as

‘warnings’ or ‘no warnings’ indicating whether or not

the defined event is expected to occur based on

contingency table (Harvey et al. 1992; Mason and

Graham 1999) (Table 1).

The total number of events is given by e, and of

nonevents by e’. The total number of warnings is

given by w, and of no-warnings by w’. The following

outcomes are possible: a hit, if an event occurred and

a warning was provided (h is the  number of hits); a

false alarm, if an event did not occur but a warning

was provided (f is the number of false alarms); a miss,

if an event occurred but a warning was not provided

(m is the number of misses); a correct rejection, if an

event did not occur and a warning was not provided

(c is the number of correct rejections). The hit and

false-alarm rates, respectively, indicate the proportion

of events for which a warning was provided correctly,

and the proportion of non-events for which a warning

was provided incorrectly (Mason and Graham 1999).

Table 1. Contingency table for verification of a binary

forecast system.

Observation
Forecast

Warning, w No warning, w'

Event, e hit, h miss, m

Non-event, e' false alarm, f correct non-event, c

hit rate = h/(h + m) and false-alarm rate = f/(f + c).

Fig. 3. Constructed Analogue (CA) methods for the validation period of 2001-2009 are searched in the historical records

(1982-2000) of the large-scale variable. The local scale values associated to the analogue records found are used to

reconstruct the local variable using multiple linear regression.
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RESULTS AND DISCUSSION

Diagnosis Step

The number of PCs determining scree plot of eigen-

value showed that the points tended to level out or

approaching zero after PC5. PC1-5 appear to explain

more than 95% variance of the predictor. The degree

of freedom (d.o.f) reduction of atmospheric

circulation is very important in an analogue method.

With a high d.o.f and a short period of observations,

Lorenz (1969) found an almost similarly small

analogue of hemispheric-scale climate patterns. On

the other hand, Guzler and Shukla (1984) found

improved forecast skill by reducing the d.o.f. using

spatial and temporal averaging. Result of analogue

search showed that spatial pattern of selected χ and ψ

in database had a much closer match with the target

time. Figure 4 depicts four of thirty analogues of

spatial pattern of χ on 19 July 2001 indicating similar

pattern with the target time. Interval time of analogue

search has been restricted between 22 days before

and after target data as recommended by Hidalgo et

al. (2008). They showed that analogues of spatial

pattern of χ are much closer to target time.

Prognosis Step

The prognosis step is the derivation of the high-

resolution pattern by applying the multiple linear fit

developed from the subset of most suitable low

resolution predictors. The regression coefficients

derived for each low resolution pattern were applied

directly to the corresponding high resolution weather

patterns for the same days. The result of rainfall

downscaling showed that determination coefficient

(R2) between predicted and observed rainfall ranged

between 56% and 68% (significant at 0.05 probability

level; Fig. 5). In addition, observed rainfall pattern

had reasonable representation by downscaled

rainfall.  However,  the prediction was not able to

capture the extreme low and high original rainfall

values. According to Fernandez and Saenz (2003), the

analog models better maintain the non-normality,

which are more suitable for assessing GCM

Fig. 4. Spatial pattern of velocity potential or χ (m2s-1) on 19 July 2001 and four of thirty best analogues.
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downscaled precipitation, but they do not simulate

possible trends leading to extreme smaller or larger

values than those observed during the calibration

period.

Comparison of all ensembles and the corresponding

observed series for the first decade of March and

June rainfall showed that rainfall predictions of the

first decade of March were relatively better for

capturing the variations of observed  rainfall (Fig. 6).

On the other hand, some of the first decade of

observed June rainfall lied in the lower end of the

ensemble spread. We also found that the ensembles

were not able to reproduce a value closer to zero as

illustrated in  Figure 6c and 6d. As noted earlier

(Buizza et al. 2005; Zhu 2005), the perfect ensemble

prediction is expected to have a similar ensemble

spread for the same lead time. However, most of

ensemble spread was un-equally distributed which

came from each process of numerical weather

prediction system such as observation and data

collection, data assimilation, and forecast model.

Verification of Probabilistic Rice Area

Drought Prediction

Figure 7 shows ROC curve of rice area drought

prediction for DSP1 in rainfed rice fields and DSP2 in

irrigated rice fields. The area under ROC curves

shows the skill of the probabilistic seasonal predic-

tion for early detection of rice drought of 0.82 and

0.62 for DSP1 and DSP2, respectively. As noted by

Mason and Graham (1999), the forecast only has skill

when the hit rate exceeds the false-alarm rate. The

ROC curve will lie above the 45° line from the origin if

the forecast system is skillful and the total area under

the curve is greater than 0.5.

For a probabilistic system, the ROC curve

illustrates the varying quality of the forecast system

at different levels of confidence in the warning (the

forecast probability). For examples, for DSP1, on 40%

probability, the hit rate was 0.76. This hit rate

indicated that 76% of rainfall below 60 mm occurred

in the first  decade of March. In a forecasting

Fig. 5.  Plots of observed and predicted first decade rainfalls for April-November period from 2001 to 2009 for four

selected rain gauges, namely (a) Cikijing, Majalengka District, (b) Gegesik, Cirebon District, (c) Bugel, Indramayu District,

and (d) Darmaraja, Sumedang District. * and ** indicate significant differences at 0.01 and 0.05 probability levels,

respectively.
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environment, a hit rate of 0.76 provided an estimate

that a warning could be provided for 76% of future

first decade of March which is below 60 mm,

assuming no change in predictability or forecast

performance.

The ROC curve can be used in helping to identify

the optimum strategy in any specific application

(Harvey et al. 1992). For example, it is decided that a

warning is to be issued only when there is at least an

80% confidence that an event will occur. Decision

Fig. 6. Box plots of first decade of March rainfall of the ensembles within 2001 and 2009 for four selected rain gauges, (a)

Bunder, Cirebon District, (b) Cimalaka, Sumedang District and first decade of June rainfall for (c) Losarang, Indramayu

District, and (d) Banjaran, Majalengka District. The observed rainfall is shown as dot plots. The medians of ensemble values

are shown as solid line within each box.
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Fig. 7.  Hit rates versus false-alarm rates for (a) dry season planting I (DSP1) and (b) DSP2. ROC area is calculated from

30 ensemble members of predicted rainfall of 42 rain gauges for 2001-2006 period.

First decade

rainfall of June

(mm)

First decade

rainfall of June

(mm)

a
1.0

0.8

0.6

0.4

0.2

0

Hit rate

A = 0.82

0 0.2 0.4 0.6 0.8 1

False alarm rate

b
1.0

0.8

0.6

0.4

0.2

0

Hit rate

A = 0.82

0 0.2 0.4 0.6 0.8 1

False alarm rate



Prediction of drought impact on rice paddies in West Java ... (Elza Surmaini et al.)  29

can also be determined using optimal probability,

which is defined by Youden index (J). J is a maximum

vertical distance or difference between the ROC curve

and the diagonal or chance line as noted by

Schisterman et al. (2005).  J is a commonly used

measure of overall diagnostic effectiveness of the

forecast.  In this study, J for DSP1 was 40% and for

DSP2 was 30%. This probability indicated that rice

drought events can be forewarned when at least 40%

of the ensemble members simulate rainfall amounts

below 60 mm occur in the first decade of March for

DSP1 and 30% members simulating rainfall amount

below 20 mm in the first decade of June for DSP2.

This study also showed that the skill of the

probabilistic seasonal prediction for early detection

of rice drought was found to range from 62% to 82%

with an improved lead time of 2-4 months compared

to that of using Niño 3.4 index with lead time of 0-2

months. Lead time of 0-2 months would not allow

adequate time to predict rice drought impact

concerning those plants in the earlier DSP1 (March)

and DSP2 (June) as described by Surmaini et al.

(2014a). Rice drought prediction with lead time of 2-4

months provided sufficient time for  policy makers,

farmers and extension workers to cope with yield

reduction by preparing suitable farming practices and

equipments. In practice, this probabilistic drought

prediction should be very informative to the

forecaster. The forecaster may interpret and

recommend to end-user the optimal probability of

forecast.

CONCLUSION

The CA method has been employed to produce

downscaled local rainfall prediction using  GCM with

ψ and χ at 850 hPa as predictors. The skills of rice

drought on DSP 1 and DSP2 were found to range from

62% to 82%. GCM with 6-9-month lead time in multi-

windows monsoon areas may serve as better tools for

predicting rice drought compared to  ENSO indices

with an improved lead time of 2-4 months.

Drought events in rice areas can be forewarned

when at least 40% of the ensemble members simulate

rainfall amounts below 60 mm in the first decade of

March for rainfed rice field in DSP1 and 30% for

amount below 20 mm in the first decade of June in

irrigated rice field for DSP2. Furthermore, the CA

method can be used for downscaling the CGM rainfall

prediction in the dry season over areas of Indonesia

under the influence of monsoonal rainfall pattern.

However, for areas under the influence of local rainfall

pattern, the use of CGM prediction should be

evaluated further.

For users such as practical decision makers,

extension worker and farmers, result of the study

can ultimately be applied for predicting drought in

rice production areas, such that any form of insightful

anticipation and intervention can be done. The lead

time of 2-4 months provides sufficient time for

preparing suitable farming practices and supplies of

incoming planting season.
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