PENETAPAN BATAS KRITIS HARA K TANAH DALAM KAITANNYA DENGAN PEMUPUKAN K PADA TANAMAN JAGUNG DI LAHAN KERING

Peter Tandisaul dan M. P. Sirappa²
1) Peneliti BPTP Sulawesi Selatan dan 2) Peneliti BPTP Maluku

Abstract

ABSTRAK Kegiatan ini merupakan bagian dari penelitian Kalibrasi Uji Tanah Hara K pada Jagung, yang dilaksanakan di desa Pattalassang, kecamatan Bontomarannu, kabupaten Gowa, Sulawesi Selatan dari bulan Mei 2002 sampai Maret 2003. Tujuan penelitian ini adalah untuk menetapkan batas kritis hara K untuk jagung dalam kaitannya dengan aplikasi pemupukan K. Metode yang digunakan dalam penetapan batas kritis hara K adalah Metode Grafik Cate-Nelson. Hasil penelitian menunjukkan bahwa batas kritis hara K yang diperoleh dengan menggunakan Metode Grafik Cate-Nelson untuk masing-masing pengekstrak : $\mathrm{NH}_{4} \mathrm{OAC} \mathrm{pH} 4,8, \mathrm{NH}_{4} \mathrm{OAC}$ pH 7, Olsen, dan Bray-1, berturutturut sebesar $0,30 \mathrm{me} / 100 \mathrm{~g}, 0,35 \mathrm{me} / 100 \mathrm{~g}, 213 \mathrm{ppm}$, dan 178 ppm . Untuk tanah Alfisols, khususnya Typic Rhodustalfs yang mempunyai kadar hara K yang lebih rendah dari nilai batas kritis perlu dilakukan pemupukan K untuk memperoleh hasil yang tinggi. Batas kritis hara K yang diperoleh dengan Metode Grafik Cate-Nelson dapat digunakan sebagai acuan dalam melakukan tindakan pemupukan pada jenis tanah dan varietas jagung yang relatif sama pada lokasi kegiatan.

Kata Kuncl : Batas Kritis Hara K, Jagung, Metode Grafik Cate-Nelson, Alfisols, Pemupukan

PENDAHULUAN

Kalium meskipun bukan merupakan bagian dari struktur atau senyawa dalam tanaman, tetapi merupakan unsur esensial pada hampir semua proses untuk menunjang pertumbuhan tanaman. Kalium memegang peranan penting dalam proses fisiologis tanaman, transpirasi dan pengambilan unsur mineral yang lain, mempercepat pertumbuhan jaringan meristem, mengatur pergerakan stomata dan pengambilan air (Tisdale, Nelson, dan Beaton, 1990; Jones, Wolf, dan Wills, 1991). Selain itu, kalium juga berperan dalam proses pembelahan sel, fotosintesis, reduksi nitrat yang diperluakan untuk sintesa protein dan aktivitas enzim (Jones, 1979), yang jumlahnya lebih dari 60 macam enzim dan sebagian besar terdapat dalam jaringan meristematik (Tisdale et al.,1990; Ismunadji, 1989).

Ketersediaan kalium diartikan sebagai kalium yang dapat dipertukarkan dan dapat diserap oleh tanaman (Hakim et al., 1986). Menurut Tisdale et al., 1990), ketersediaan kalium untuk tanaman dipengaruhi oleh keadaan tanah dan tanaman itu sendiri. Faktor-faktor tanah yang mempengaruhi ketersediaan K adalah jenis mineral liat, KTK, jumlah K-dd, kapasitas fiksasi kalium, kadar air tanah, aerasi, suhu tanah, pH tanah, serta kandungan Ca dan Mg , sedangkan dari faktor tanaman adalah KTK akar, sistem perakaran dari tanaman, populasi dan jarak tanam, tingkat hasil, dan umur tanaman.

Konsentrasi kalium dalam tanah rata-rata sekitar 1.2 \% dengan kisaran $0,5 \%-2,5 \%$ (Tisdale et al., 1990). Pada tanah-tanah di daerah tropik, kandungan K dapat lebih rendah karena sumbernya K rendah, curah hujan dan temperatur yang tinggi. Menurut Ismunadji (1989), tingkat minimum absolut dari K-dapat ditukar untuk pertanian tropik diperkirakan mendekati $0,1 \mathrm{me} / 100 \mathrm{~g}$, tetapi dapat bervariasi antara $0,07 \mathrm{me}-0,20 \mathrm{me} / 100 \mathrm{~g}$, tergantung dari jenis tanah dan tanaman. Tingkat di bawah $0,15 \mathrm{me} / 100 \mathrm{~g}(60 \mathrm{ppm})$, umumnya dianggap tidak mencukupi untuk menopang pertumbuhan tanaman yang normal.

Status hara tanah pada pertanaman jagung erat kaitannya dengan tingkat hasil tanaman. Penilaian status hara tanah umumnya lebih disukai daripada status hara tanaman, karena adanya petunjuk kekurangan hara akan dapat segera dikoreksi sebelum tanaman ditumbuhkan. Menurut Fathan, Rahardjo, dan Makarim (1988), batas kritis kekurangan hara K untuk tanaman jagung adalah $0,30 \mathrm{me} / 100 \mathrm{~g}$, namun jenis tanah dan varietas jagung yang digunakan tidak dijelaskan.

Batas kritis merupakan kadar hara dalam contoh tanah atau tanaman, dimana kecepatan tumbuh, produksi atau kualitas secara nyata mulai menurun (Sutandi, 1996); kadar hara dimana masih kurang untuk mendukung tercapainya produksi maksimum, kadar hara dimana pertumbuhan tanaman mulai berkurang, dan jumlah terendah dari suatu unsur untuk menyertai produksi tertinggi (Dow dan Robert, 1982).

Penetapan batas kritis hara pada tanah dapat dilakukan dengan berbagai metode. Salah satu metode tersebut Cate-Nelson, yaitu penetapan batas kritis pada sekumpulan data hubungan kadar hara dengan produksi atau hasil relatif, yang membagi kumpulan data menjadi dua kelompok (cluster), yaitu kelompok tinggi dan rendah atau respon dan tidak respon terhadap pemupukan (Widjaja-Adhi, 1996; Dahnke dan Olson, 1990; Nelson dan Anderson, 1977).

Tujuan dari penelitiar ini adalah untuk mengetahui batas kritis hara K tanah untuk tanaman jagung dalam kaitannya dengan periu tidaknya dilakukan pemupukan K pada jagung di lahan kering.

BAHAN DAN METODE

Kegiatan ini merupakan bagian dari penelitian kalibrasi uji tanah hara K untuk tanaman jagung. Kegiatan dilakukan pada lahan kering di wilayah sentra produksi jagung Sulawesi Selatan, di Desa Pattallassang, Kecamatan Bontomarannu, Kabupaten Gowa, yang dimulai pada bulan Mei 2002 sampai Maret 2003. Jenis tanah pada lokasi percobaan termasuk Ordo Alfisols dan pada tingkat famili tergolong Typic Rhodustalfs (Soil Survey Staff, 1996; 1998).

Penelitian kalibrasi uji tanah hara K untuk tanaman jagung dilaksanakan dengan menggunakan pendekatan lokasi tunggal (single location), yaitu dengan membuat status hara K tanah buatan dari sangat rendah hingga sangat tinggi. Selanjutnya dilakukan percobaan pemupukan K pada setiap status hara tanah buatan tersebut. Perlakuan diulang sebanyak tiga kali.

Cara penentuan batas kritis dengan metode grafik Cate-Nelson adalah sebagai berikut : (1) buat diagram sebaran dari hasil relatif pada sumbu Y dan nilai uji tanah hara K pada sumbu X, (2) letakkan dua garis bersilangan (sumbu salib) pada diagram sebaran tersebut yang membagi empat kuadran, yaitu kuadran kiri bawah dan kanan atas dinamakan kuadran positif, dan kuadran kiri atas dan kanan bawah sebagai kuadran negatif, (3) dengan menggeser-geser sumbu salib tersebut (usahakan jumlah titik pada kuadran negatif sesedikit mungkin, sedangkan pada kuadran positif sebanyak mungkin), (4) perpotongan garis tegak (sejajar sumbu Y) dengan sumbu X merupakan "batas kritis"dari hara K. Daerah yang berada di sebelah kiri batas kritis tergolong kategori rendah dan disebut sebagai daerah responsif, sedangkan yang ada di sebelah kanan batas kritis termasuk kategori tinggi dan merupakan daerah tidak responsif terhadap pemupukan, seperti pada Gambar 1.

Data produksi yang diukur adalah hasil relatif, yaitu perbandingan antara hasil yang diperoleh tanpa pupuk K dengan hasil maksimum yang diperoleh dengan pemupukan K (Evans, 1987), sedangkan kadar K tanah ditetapkan dengan metode : $\mathrm{HCl} 25 \%$; $\mathrm{NH}_{4} \mathrm{OAc}$ pH 7; $\mathrm{NH}_{4} \mathrm{OAC} \mathrm{pH} 4,8$; Bray-1; dan Olsen.

Gambar 1. Contoh penetapan batas kritis dengan metode Cate-Nelson

HASIL DAN PEMBAHASAN

Kadar Hara K Buatan dan Hasil Relatif

Kadar hara K buatan yang diperoleh dari berbagai pengekstrak K menunjukkan bahwa pengekstrak K yang memberikan korelasi baik dengan hasil relatif adalah pengekstrak $\mathrm{NH}_{4} \mathrm{OAC} \mathrm{pH} 4.8$, Olsen, $\mathrm{NH}_{4} \mathrm{OAC} \mathrm{pH} 7$, dan Bray-1 dengan nilai korelasi (r) berturut-turut sebesar 0,$715 ; 0,601 ; 0,575$; dan 0,528 , sedangkan yang tidak berkorelasi baik adalah pengekstrak $\mathrm{HCl} 25 \%$ dengan nilai r sebesar 0,380 (Tabel 1).

Nilai hara K buatan cenderung meningkat sejalan dengan meningkatnya takaran perlakuan dalam pembuatan status hara K buatan. Demikian juga rata-rata hasil relatif cenderung meningkat dengan meningkatnya nilai hara K buatan pada berbagai pengekstrak K, seperti yang ditunjukkan pada Gambar 2a, b, c, dan d.

Tabel 1. Hasil Analisis Kadar Hara K Buatan dengan berbagai Pengekstrak dan Hasil Realtif pada Penelitian Kalibrasi Uji Hara K Tanah di Gowa, Sulawesi Selatan, 2002/2003.

Periakuan/ Ulangan	Terhadap contah tanah kering $105^{\circ} \mathrm{C}$					
	$\begin{gathered} \mathrm{HCl} 25 \% \\ (\mathrm{mg} / 100 \mathrm{~g}) \end{gathered}$	$\mathrm{NH}_{4} \mathrm{OACPH} 4.8$	$\mathrm{NH}_{4} \mathrm{OACPH} 7$	Bray-1	Oisen	Y relatif (\%)
	 (me/100 g) (ppm)		
A-1	34,00	0,57	0,43	288	196	68,55
A-II	22,20	0.31	0,29	168	178	66,88
A-III	11,10	0,16	0,14	92	211	54,38
Rataan	22.43	0.35	0.29	183	195	63.27
B-1	36,00	0.54	0.35	269	195	64,30
B-II	22.40	0.34	0,29	174	103	60,70
B-III	15,70	0,27	0.21	141	208	62,20
Rataan	24,70	0,38	0,28	195	169	62,40
C-1	33,00	0,54	0,35	248	243	85.25
C-II	24,00	0,32	0,35	193	239	81,48
C-III	15,60	0.32	0,29	151	237	87.60
Rataan	24,20	0.39	0,33	197	240	84,78
D-1	39,00	0.72	0.42	341	247	92,22
D-II	26,10	0,42	0.45	219	242	88,26
D-III	22,20	0,44	0,36	202	235	87.26
Rataan	29.10	0,53	0,41	254	241	89.25
E-1	39,00	0,66	0.53	343	264	98,41
E-II	21,50	0,44	0,35	210	251	93,07
E-III	25,30	0.49	0,40	226	177	98.72
Rataan	28,60	0,53	0,43	260	231	96,73

Keterangan :- $\mathrm{A}=\mathrm{K}$ buatan sangat rendah; $\mathrm{B}=\mathrm{K}$ buatan rendah; $\mathrm{C}=\mathrm{K}$ buatan sedang; $\mathrm{D}=\mathrm{K}$ buatan tinggi; $\mathrm{E}=\mathrm{K}$ buatan sangat finggi
I = Ulangan I; II = Ulangan II; III = Ulangan III

$-\mathrm{HCl} 25 \%$	$: Y=0,6241+0,00652 \mathrm{~K} ; \mathrm{r}=0,380$
$\mathrm{NH}_{4} \mathrm{OACpH} 4,8$	$: Y=0,4100+1,1008 \mathrm{~K} ; r=0,715^{* *}$
$\mathrm{NH}_{4} \mathrm{OACpH} 7$	$: Y=0,549+0,558 \mathrm{~K} ; r=0,575^{*}$
Olsen	$: Y=0,327+0,00217 \mathrm{~K} ; r=0,601^{*}$
Bray-1	$: Y=0,552+0,0011 \mathrm{~K} ; r=0,528^{*}$

- Yrelatif $=Y_{0} /$ Ymaks. $\times 100 \%$

(a) $\mathrm{NH}_{4} \mathrm{OAC} \mathrm{pH} 4,8$

(c) Bray-1

(b) $\mathrm{NH}_{4} \mathrm{OACpH} 7$

(d) OIsen

Gambar 2. Hubungan nilai uï hara K pengekstrak $\mathrm{NH}_{4} \mathrm{OAC}$ pH 4.8 (a): $\mathrm{NH}_{4} \mathrm{OAC} \mathrm{pH} 7$ (b); Bray-1 (c): Olsen(d) dengan hasil relatif pada berbagai status hara K tanah
Keterangan : A : status hara K buatan sangat rendah; B : status hara K buatan rendah; C : status hara K buatan sedang
D : status hara K buatan tinggi; E : status hara K buatan sangat tinggi

$\leftrightarrow \quad$: hasil relaiif

Batas Kritis Hara K

Batas kritis hara K untuk tanaman jagung yang diperoleh dengan metode grafik Cate-Nelson untuk pengekstrak $\mathrm{NH}_{4} \mathrm{OAC} \mathrm{pH} 7, \mathrm{NH}_{4} \mathrm{OAC} \mathrm{pH} 4,8$. Bray-1, dan Olsen berturut-turut sebesar 0,35 me/100 g. $0,30 \mathrm{me} / 100 \mathrm{~g}, 178 \mathrm{ppm}$, dan 213 ppm , seperti disajikan pada Gambar $3 \mathrm{a}, \mathrm{b}, \mathrm{c}$, dan d.

Gambar 3. Batas Kritis Hara K untuk Jagung dengan menggunakan Metode Grafik Cate-Nelson pada berbagai pengekstrakK; $\mathrm{NH}_{4} \mathrm{OAC} \mathrm{pH} 7(\mathrm{a})$; $\mathrm{NH}_{4} \mathrm{OAC}$ pH 4.8 (b); Bray-1 (c); Olsen (d)

Hasil penelitian Fathan et al. (1988) mendapatkan batas kritis hara K tanah untuk tanaman jagung sekitar $0,30 \mathrm{me} / 100 \mathrm{~g}$, namun tidak dijelaskan lebih lanjut mengenai metode pengekstrak yang digunakan, jenis tanah dan varietas jagung yang digunakan. Batas kritis hara K tanah yang diperoleh dalam penelitian ini terutama untuk pengekstrak $\mathrm{NH}_{4} \mathrm{OAC}$ pH 4,8 tidak berbeda dengan batas kritis yang diperoleh peneliti terdahulu. Batas kritis hara dipengaruhi oleh beberapa faktor, seperti jenis tanah, status hara dalam tanah, serta jenis dan varietas tanaman indikator yang digunakan.

Menurut Landon (1984 dalam Leiwakabessy dan Sutandi, 1996), kriteria secara umum penilaian ketersediaan hara K dengan pengekstrak $\mathrm{NH}_{4} \mathrm{OAC} \mathrm{pH} 7$ adalah sebagai berikut: (a) rendah: $<0,25$ $\mathrm{me} / 100 \mathrm{~g} ;(\mathrm{b})$ sedang : $0,25 \mathrm{me}-0,50 \mathrm{me} / 100 \mathrm{~g}$; dan (c) tinggi : $>0,50 \mathrm{me} / 100 \mathrm{~g}$.

Penetapan hasil relatif sekitar $80 \%-90 \%$ hasil maksimum (garis yang sejajar dengan sumbu X) pada metode grafik Cate-Nelson didasarkan atas pertimbangan bahwa hasil tanaman dipengaruhi oleh banyak faktor, sehingga untuk mencapai hasil $95 \%-100 \%$ hasil maksimum tidak mungkin. Hal yang sama dikemukakan oleh Tisdale et al. (1990), bahwa penarikan garis yang sejajar dengan sumbu X dilakukan pada nilai sekitar 80% hasil maksimum.

Daerah yang berada di sebelah kiri nilai batas kritis K merupakan daerah yang responsif, sedangkan yang berada di sebelah kanan batas kritis K adalah daerah yang tidak responsif terhadap pemupukan K. Atau dengan kata lain bahwa daerah yang berada di sebelah kiri batas kritis merupakan daerah yang mempunyai status hara K rendah dan tanggap terhadap pemberian pupuk K, sedangkan daerah di sebelah kanan batas kritis merupakan daerah yang mempunyai status hara K tinggi dan tidak tanggap terhadap pemupukan K. Status hara K rendah pada umumnya tergolong dalam nilai kritis sehingga perlu dilakukan tindakan pemupukan.

Metode grafik Cate-Nelson selain dapat digunakan dalam penentuan batas kritis hara K, juga untuk menentukan kelas ketersediaan hara K. Daerah yang berada di sebelah kiri batas kritis merupakan daerah yang mempunyai kadar hara K rendah, sebaliknya yang ada di sebelah kanan merupakan daerah yang mempunyai kadar hara K tinggi. Dengan kata lain, jika kadar hara K lebih kecil
dari nilai batas kritis, maka tergolong rendah, dan jika lebih besar dari nilai batas kritis termasuk kategori tinggi. Namun penetapan kelas ketersediaan hara K dengan metode grafik Cate-Nelson mempunyai kelemahan karena hanya terdiri dari dua kelas, yaitu kelas rendah dan tinggi, atau respon dan tidak respon terhadap pemupukan.

Metode lain yang dapat digunakan untuk penetapan kelas ketersediaan hara adalah metode analisis keragaman yang dimodofikasi (Nelson dan Anderson, 1977) atau metode kurva kontinyu (persen produksi relatif) yang dikemukakan oleh Leiwakabessy (1996) dan Dahnke dan Olson (1990). Perlu dilakukan penetapan batas kritis hara K dengan metode lain, seperti metode analisis keragaman yang dimodifikasi dan kurva kontinyu untuk saling melengkapi.

Aplikasi Pupuk K

Nilai batas kritis hara K tanah yang diperoleh dengan metode Grafik Cate Nelson dapat dijadikan sebagai acuan perlu tidaknya tindakan pemupukan dilakukan pada suatu jenis tanah yang akan diusahakan untuk tanaman jagung. Nilai hara K tanah Alfisols pada lokasi penelitian tergolong sangat rendah dan lebih rendah daripada nilai batas kritis hara K untuk jagung berdasarkan metode grafik Cate Nelson.

Dengan demikian, penanaman jagung khusunya varietas Lamuru pada tanah Alfisols khususnya Typic Rhodulstalfs perlu pemberian pupuk K untuk memperoleh pertumbuhan dan hasil jagung yang tinggi. Namun berapa jumlah pupuk K yang harus diberikan belum diketahui secara pasti, masih diperlukan penelitian lanjut dalam penetapan takaran rekomendasi pemupukan K untuk jagung melalui studi kalibrasi uji tanah. Nilai batas kritis hara K dengan metode grafik Cate Nelson hanya memberikan indikasi bahwa tanah tersebut untuk pengembangan tanaman jagung perlu diberi tambahan pupuk K karena berada di bawah nilai batas kritis.

KESIMPULAN DAN SARAN

- Pengekstrak K yang memberikan korelasi terbaik dengan hasil relatif jagung pada tanah Typic Rhodulstalfs adalah $\mathrm{NH}_{4} \mathrm{OAC} \mathrm{pH} 4,8$; menyusul Olsen, $\mathrm{NH}_{4} \mathrm{OAC} \mathrm{pH} 7$; dan Bray-1, berturut-turut dengan nilai korelasi (r) sebesar 0,$715 ; 0,601 ; 0,575$; dan 0,528 , sedangkan $\mathrm{HCl} 25 \%$ tidak berkorelasi baik dengan nilai r sebesar 0,380.
- Batas kritis hara K dengan metode grafik Cate-Nelson untuk pengekstrak $\mathrm{NH}_{4} \mathrm{OAC} \mathrm{pH} 4,8$; $\mathrm{NH}_{4} \mathrm{OAC}$ pH 7; Olsen; dan Bray-1; berturut-turut sebesar $0,30 \mathrm{me} / 100 \mathrm{~g} ; 0,35 \mathrm{me} / 100 \mathrm{~g} ; 213 \mathrm{ppm}$; dan 178 ppm.
- Nilai batas kritis hara K dapat dijadikan sebagai acuan perlu tidaknya dilakukan tindakan pemupukan K khusunya pada tanah yang relatif sama dengan tanah Alfisol.
- Pada tanah yang mempunyai nilai kadar hara $\mathrm{K}<0,30$ me/ $100 \mathrm{~g}\left(\mathrm{NH}_{4} \mathrm{OAC} \mathrm{pH} 4,8\right)$; $<0,35 \mathrm{me} / 100 \mathrm{~g}$ ($\mathrm{NH}_{4} \mathrm{OAC} \mathrm{pH} 7$); < 178 ppm (Bray-1); dan < 213 ppm (Olsen) perlu dilakukan tindakan pemupukan K untuk memperoleh hasil yang tinggi.
- Perlu dilakukan penetapan batas kritis hara K dengan metode lain dan penelitian lanjut untuk menentukan takaran rekomendasi pemupukan K pada jagung melalui studi kalibrasi uji tanah.

DAFTAR PUSTAKA

Dahnke, W.C. and R.A. Olson. 1990. Soil Test Correlation, Calibration, and Recommendation, pp. 45-71. In Soil Testing and Plant Analysis. $3^{\text {rd }}$ ed. SSSA, Madison, WI.
Dow, A.I. and S. Robert. 1982. Proposal : Critical nutrient ranges for crop diagnosis. Agron. J. 74: 401-403.
Evans, C.E. 1987. Soil Test Calibration, pp. 23-29. In J.R. Brown, T.E. Bates, and M.L. Vitosh (eds). Soil Testing : Sampling, Correlation, Calibration, and Interpretation. SSSA Special Publication 21. SSSA, Madison, WI.
Fathan, R., M. Rahardjo, dan A.K. Makarim, 1988. Hara tanaman jagung. Hal. 67-80. Dalam Subandi, M. Syam, dan A. Widjono (penyunting). Jagung. Puslitbangtan, Bogor.
Hakim, N., M. Y. Nyakpa, A.M. Lubis, S.P. Nugroho, M.R. Saul, M.A. Diha, Go Bang Hong, dan H.H. Bailey. 1986. DasarDasar llmu Tanah. Universitas Lampung.
Ismunadji, M. 1989. Kalium : Kebutuhan dan Penggunaannyo dalam Pertanian Modern. (Terjemahan dari buku Potash, its need and use in modern agriculture). Penerbit rotash \& Potash Institute of Canada. 46 hal.

Jones, J.B., Jr, B. Wolf, and H.A. Mills. 1991. Plant Analysis Handbook. A Practical Sampling, Preparation, Analysis, and Interpretation Guide. Micro-Macro Publishing, Inc.
Jones, U.S. 1979. Fertilizers and Soil Fertility. Reston Publishing Company, Inc., New York.
Leiwakabessy, F.M. dan A. Sutandi. 1992. Pupuk dan Pemupukan. Jurusan Tanah, Fakultas Pertanian, Instifut Pertanian Bogor.
Leiwakabessy, F. M. 1996. Interpretasi Data Uji Tanah dan Dasar-Dasar Rekomendasi Pemupukan. Dalam Pelatihan Optimalisasi Pemupukan. Proyek Pembinaan Kelembagaan Penelitian dan Pengembangan Pertanian bekerjasama dengan Fakultas Pertanian, Institut Pertanian Bogor, 19-31 Januari 1996.
Nelson, L.A. and R.L. Anderson. 1977. Partitioning of Soil Test-Crop Response Probability, pp. 19-38. In Soil Testing : Correlating and Interpretating the Analitycal Results. ASA Special Publication 29. ASA, CSSA, SSSA, Madison, WI.

Soil Survey Staff. 1996. Keys to Soil Taxonomy. $7^{\text {m }}$ Edition. United States Department of Agriculture.
Soil Survey Staff. 1998. Kunci Taksonomi Tanah. Edisi Kedua Bahasa Indonesia, 1999. Pusat Penelitian Tanah dan Agroklimat. Badan Litbang Pertanian.
Sutandi, A. 1996. Interpretasi Hasil Analisis Tanaman. Dalam Pelatihan Optimalisasi Pemupukan. Proyek Pembinaan Kelembagaan Penelitian dan Pengembangan Pertanian bekerjasama dengan Fakultas Pertanian, Institut Pertanian Bogor, 19-31 Januari 1996.
Tisdale, S., W.L. Nelson, and J.D. Beaton. 1990. Soil Fertility and Fertilizers. $4^{\text {th }}$ Edition. MacMillan Publishing Company, New York.
Widjaja-Adhi, IGP. 1996. Penggunaan Uji Tanah dan Analisa Daun sebagai Dasar Rekomendasi Pemupukan. Dalam Pelatihan Optimalisasi Pemupukan. Proyek Pembinaan Kelembagaan Penelitian dan Pengembangan Pertanian bekerjasama dengan Fakultas Pertanian, Institut Pertanian Bogor, 19-31 Januari 1996.

