POTENSI MANDALUNG YANG DIBERI IMBUHAN PAKAN AVILAMIISINA DITINJAU DARI POTONGAN KARKAS KOMERSIAL DAN MEAT BONE RATIO

Procula R, Matitaputty

Peneliti Balai Pengkajian Teknologi Pertanian Maluku

Abstract

ABSTRAK Suatu penelitian yang menggunakan imbuhan pakan avilomisina, telah diiakukan dengan fujuan untuk mempelajari pengaruh avilamisina terhadap potongan karkas komersial dan meat bone ratio. Sebanyak 138 ekor anak mandalung umur sehari yang dibagi dalam dua kelompok dengan tidak membedakan jantan dan betina. Kelompok pertarna diberi perlakuan ransum tanpa avilamisina dan lainnya ransum ditambah 10 ppm avilamisina. Setiap kelompok dibagi lagi menjadi 3 kelompok kecil yang berfungsi sebagai ulangan, yang terdiri dari 23 ekor. Pemotongan dilakukan pada umur 4 dan 10 minggu. Peubah yang diamatl adalah pertambahan bobot badan. persentase potongan karkas kamersial dan meat bone ratio. Hasil penelitian menunjukkan bahwa penggunaan avilamisina dapat meningkatkan bobot badan mandalung yaitu 2209.24 g dun tanpa avilamisina sebesar $2061,88 \mathrm{~g}$, sementara bobot karkas mandalung yang diberi avilamisina 1257.8 g dan tanpa avilamisina 1101.2 g sadangkan dalam produksi daging penggunaan avilamisina menghosilkan persentase daging dada (86%), paha bawah (83\%) dan paha atas (85\%) lebih tingg dibondingkan dengan tanpa avilamisina.

Kata Kuncl : Imbuhan pakan, mandalung, meat bone ratio, potangan karkas komersial.

PENDAHULUAN

Itik di Indonesia berperan sebagai penghasil telur dan daging. Kebutuhan daging unggos untuk konsumsi Nasional berdasarkan data stalistik tahun 2003 sebesar 1.203 .3 ton, semetara peranan itik sebagai penghasil daging masih rendah yaitu 22,9 ton sangat rendah jika dibandingkan dengan temak unggas lainnya. Untuk kebutuhan telur dil Indonesia membutuhikan sebanyak 1.060,3 ton, sumbangan itik sebesar 179,0 ton (BPS Petemakan, 2003). Tingkat produktivitas itik lokal Indonesia baik telur moupun daging masih rendah dan masih berpeluang untuk difingkalkan.

Sumber utama produiksi daging unggas di indonesia berasal dari ternak yang bibitnya di impor, Melihat ketergantungan Indonesia pada luar negeri khususnya daging, maka perlu dilakukan upaya untuk menguranginya, dengan melakukan pengembangan sumberdaya temak lokal. Salah satu temak lokal yang berpotensi tinggi untuk dikembangkan adalah unggas air seperti itik dan entog.

Itik dan entog merupakan temak komoditas unggulan yang menjadi perhatian pemerintah saat ini. Unggas air ini cukup populer, selain ayam ras maupun ayam kampung, karena dikalangan peternak ternak ini berperan sebagai sumber daging dan telur yang dapat menamban pendapatan.

Keunggulan unggas air ini seperti temak lokal lainnya temyata tahan dan tangguh dalam menghadapi berbagai gejolak, baik gejolak ekonomi, teknis maupun sosial. Unggas air ini sangat potersial untuk dikembangkan karena kebutuhan akan bibit dapat dipenuhi dari dalam negeri.

Itik dan entog adalah jenis unggas penghasil daging selain ayam ras. Untuk memenuhi konsusmsi protein hewani, maka daging itik dan entog merupakan salah sctu komoditi alternatif yang dapat diandakan dan mudah diperoleh masyarakat.

Sekarang ini budidaya itik dan entog dengan tujuan penghasil daging belum banyak dilakukan, walaupun perkembangan saat ini menuniukkan daging litik dan entog sudah disukai masyarakat perkotaan. Dalam rangka meningkatkan produiksi daging itik dan entog dipertukan suatu teknologi produksi yang tepat seperti dengan memanfaatkan hasil persilangan. Hasil persilangan itik dengan entog mempunyai beberapa nama seperti mandalung, serati, beranti, togri (entog jantan dan meri betina), ritog (meri jantan dan entog betina), dan mungkin masih banyak lagi. Dalam bahasa Inggris ifik persilanagan ini disebut mule duck. Ada puia yang memberi nama berdasarkan nama latinnya yaitu Cainina moschata untuk entog dan Anas plathyrynchos untuk itik. Bila pejantannya entog dan betinanya itik, maka keturunannya dinamakan Cairana, bila sebaliknya maka namanya menjadi Anarina (Hardjosworo. 2001). Dalam makalah ini peneliti menggunakan nama mandalung yang konon berasal dari Filipina.

Kelebihan mandalung adalah pertumbuhannya cepal, dagingnya febal dan fidak seanyir daging itik. Oleh karena itu mandalung lebih sesuai dijadikan unggas air pedanging.

Dewasa ini peranan antibiotika selain digunakan untuk mengobati hewan yang saklt, anilbiotika juga digunakan sebogai imbuhan pakan (feed additive) untuk meningkatkan laju pertumbuhan, dan memperbaiki efisiensi pakan. Dengan demikian biaya pakan yang merupakan pengeluaran ferbesar dalam usaho petemakan (70\%) dari biaya produksi dapat ditekan. serta dapat menyingkat waktu pemeliharaan dan meningkatkan ketahanan terhadap gangguan penyakit.

Salah satu antibiotika yang masih Ydiperbolehkan pemakaiannya, oleh ypemerintah adalah avilamisina. Avilamisina termasuk kelompok imbuhan tpakan untuk temak. Berdasarka SK Direktorat Jenderal Petemakan No. 241/TN 260/Kpts/DJP/Deptan/1991 menerangkan bahwa penggunaan avilamisina pada temak berindikasi untuk meningkatkan bobot badan dan memperbaiki efisiensi pakan pada temak ayam dan babi.

Dalam uraian tersebut diatas, maka dalam upaya mengembangkan mandalung sebagai ternak penghasil daging dipandang perlu untuk dilakukan penefitian. Tujuan penelitian ini adalah mempelajari pengaruh avilamisina terhadap pertumbuhan mandalung terhadap produksi daging. Manfaat dari penelitian ini adalah sebagai bahan informasi rintisan tentang penggunaan imbuhan pakan avilamisina untuk pertumbuhan mandalung.

ASAL USUL MANDALUNG

Mandalung merupakan salah satu nama yang digunakan unfuk hasil persilangan antara entog jantan dengan itik betina atau sebaliknya. Sudah sejak lama masyarakat petani di pedesaan mengenal itik persilanagan antara litik dengan entog. karena pemeliharaan yang tradisional memberi kesempatan tejiadinya perkawinan silang secara alami. Mandalung atau itik blasteran yong umumnya terjadi adalah persilangan entog betina dengan itik jantan, persilangan entog jantan dengan itik betina jarang terjadi karena kesulitan mengawini secara alami, mengingat entog jantan berbadan besar dibandingkan dengan tubu'h itik betina yang berbadan kecil (Sukarini et al. 1975).

Mandalung memiliki organ reproduksi yang fidak berkembang (infertil), hal ini sejalan dengan pendappta yang sampaikan oleh Hadjosworo (2001) bahwa, perkawinan ifik dan entog atau sebaliknya akan menghasilakan mandalung yang mandut. Kalaupun mandalung betina dapat bertelur, ukuran telumya kecil-kecil dan tidak dapat dibuahi. Sedangkan sperma yang dihasikan oleh mandalung ajantan bersifat abnormal.
क. Banyak penelitian rinfisan yang telah dilakukan oleh peneliti salah satunya yang dilakukan oleh Hardjosworo et al, (2001) yang menelitl persliangan entog jantan ilokal dengan itik betina mojosari, diperolein mandalung yang mempunyai sifat pertumbuhan bulu yang lambat, bobot badan dalam waktu 8 minggu untuk jantan 1600 g dan betina 1300 g . namun karkas yang dihasilkan kurang bersih, untuk itu dianjurkan untuk pemotongan sebaikriya umur 10 minggukeatas.

Ketaren et al, (1999) menjelaskan bahwa, fingginya efisiensi pakan pada mandatung dalam merubah pakan menjadi daging, karena tabiat makannya, yaitu kebiasaan mencari air minum setelah makan. Makanan umumnya tercecer atau terbuang pada saat temak tersebut pindah dari tempat pakan ke tempat minum. Sejalan dengan pendapat Hadjosworo, (2001) bahwa efisiensi pakan untuk mandalung cukup tinggi 4,5 jka dibandingkan dengan ternak ayam ras.

PERTUMBUHAN MANDALUNG

Pertumbuhan adalah pembentukan jaringan-jaringan baru, yang mengakibatkan terjadinya perubahan dalam berat, bentuk, dan kamposisi tubuh hewan. Pertumbuhan dipengaruhl oleh umur, jenis kelamin, bangsa, makanan, dan hormon pertumbuhan (Hammond, 1965).

Pada kondisi lingikungan yang ideal, bentuk kurva pertumbuhan untuk semua spesies temak adalah serupa yailu mengikuti pola kurva pertumbuhan sigmoidal (Soeparno, 1998). Selanjutnya dikatakan pula bahwa pertumbuhan mula-mula terjadi sangat lambat, kemudian mengaiami akselerasi yaitu pertumbuhan yang cepat setelah itu mengaiami deselerasi yaitu pertumbuhan yang berangsur-angsur menurun atau melambat.

Ternak yang kekurangan makanan atau gizi tentu pertumbuhannya melambat atau berhenti dan kehilangan berata badan, tetapi setelah mendapat makanan yang cukup, temak tersebut sering mampu tumbuh kembali dengan cepat. bahkan lebih cepal dari laju pertumbuhan normal. Pertumbuhan semacam itu disebut pertumbuhan kompensatori atau pertumbuhan yang bersifat menyusul (Soeparno. 1998).

Hasil penelitian Ermanto, (1989), terhadap pertumbuhan mandalung lokal menunjukkan bahwa pertambahan bobot badan tertinggi dicapai pada umur 4 minggu dengan bobot badan $288,67 \mathrm{~g}$ sementara itik 5 minggu dengan bobot badan 220 g . Syamsuardi, (1989) juga meneliti tentang mandalung, hasil persilangan (entog jantan dengan ifik betina) diperoleh mandalung jantan dan betina dengan pertambahan bobot badan tertinggi pada umur 4 minggu yaitu $240,10 \mathrm{~g}$ dan 226.90 g . sedangkan untuk entog jantan dan betina pada umur $5-6$ minggu dengan pertambahan bobot badan masingmasing 372.00 g dan 236.50 g . sementara itik dicapai pada umur $7-8$ minggu.

IMBUHAN PAKAN

Satu senyawa atau campuran berbagai senyawa jang ditambahkan pada makanan tetapi tidak termasuk sebagai zat makanan disebut sebagai imbuhan pukan atau feed additive (Patrick dan Schaible, 1980).

Antibiotika yang berfungsi sebagai imbuhan pakan ternak harus memenuhi beberapa kriteria tertentu dan kriteria ini bertujuan untuk menghindari efek samping yang tidak diinginkan. Unandar, (2001) mengemukakan kriteria tersebut yaitu:

1. Dapat meningkatkan penampilan hewan temak secara efektif dan ekonomis.
2. Tidck menimbulkan efek negatif pada keseimbangan mikroflora usus hewan yang mengkonsumsinya.
3. Tidak bersifat racun bagi hewan temak, maupun manusia yang menggunakannya.
4. Tidck menimbulkan residu/kerusakan pada lingkungan dan harus mudah dibiodegradasi di alam.
5. Tidok digunakan pada dunia kesehataan manusia.
6. Tidak mempunyai sifat resistensi silang dengan preparat antibiotika lainnya.

Antibiotika dapat juga berfungsi sebagai pure growth promotor atau antibiotika aksi ganda. Perbedaaannya adalah pure growth promotor walau dalam dosis besar tidak memberi efek terapl, sangat aman terhadap lingkungan dan ternak sasaran, tidak meninggalkan residu pada jariangan ternak sasaran, mekanisme kerja dalam memben efek pemacu pertumbuhan biasanya jelas dan spesifik, sementara permasalahan dengan antibiotika aksi ganda adalah dapat menimbulkan resistensi dan residu pada jaringan ternak saasaran, mekanisme kerja daiam memberikan efek pemacu pertumbuhan tidak jelas (Shen, 1992).

AVILAMISINA

Avilamisina diklasifikasikan sebagai perangsang metabolik, sebab dapat meningkatkan metabolis bakteri yang menguntungkan untuk induk semangnya tanpa menimbulkan pengaruh buruk pada populasi mikroba usus (Elanco,1990). Penelitian secara in-vitro menunjukkan bahwa avilamisina bekerja melalui 3 cara yaitu: 1). Meningkatkan ketersediaan glukosa. Bakteri dan induk semang membutuhkan karbohidrat terutama glukosa. Avilamisina mengurai populasi bakteri pengguna glukosa sehingga pakan dapat dengan sepenunnya digunakan oleh induk semang; 2). Mengurangi asam laktat di usus halus, sehingga gerak peristaltik di usus halus menurun dan pakan lebih lama di usus sehingga pemanfaatan pakon oleh ternak menjadi optimal; 3). Meningkatkan pembentukan VFA. Pemanfaatan pakan dapat ditingkatkan dengan meningkatkan produksi VFA (acetat, propionat dan butirat) melalui fermentasi bakteri terhadap sisa pakan seperti selulosa di sekum.

Avilamisina merupakan pemacu pertumbuhan yang dicampurkan kedalam ransum yang bersifat prebiotik. Menurut Best (2000) beberapa oligosacarida yang tidak dcpat dicema dapat berfungsi sebagai suatu prebiotik, yaitu suatu bahan kimiawi yang dapat merangsang pertumbuhan mikroflora normal saluran cema hewan ternak, terutama dari kelompok bakteri bafidus. Prebiotik merupakan cara penambahan nutrisi yang ditujukan untuk memberi media tumbuh bagi bakteri pada ternak (Utomo, 2002).

MATERI DAN METODE

Materi Penelifian

Kegiatan penelition dilakukan selama 10 minggu. Mandalung yang digunakan sebanyak 138 ekar dengan umur sehari, Pakan yang digunakan berupa pakan jadi produksi Charoen Pokphand yang dibagi dalam dua perlakuan yaitu (RO) tanpa avilamisina dan (Ra) tambah 10 ppm avilamisina. Masing-nasing pakan mengandung protein sebesar 19.30 dan 19.55 dengan kandungan energi yaitu (GE) : 3709 dan 3681

Kandang berbentuk panggung ukuran $2 \mathrm{~m} \times 2 \mathrm{~m} \times 60 \mathrm{~cm}$, yang dilengkap dengan perlengokapan makan dan minum serta lampu.

Mefode Penelitian

Mandalung umur sehari dibagi dalam dua kelompok yang sama, masing-masing terdiri atas 69 ekor. Satu kelompok diperuntukan bagi periakuon pakan tanpa avilomisino dan yang satu lagi bagi pakan yang ditambahkan 10 ppm avilamisina. Setiap keiompok dibagi lagi menjadi 3 kelompok kecil yang berfungsi
sebagai ulangan, masing-masing terdiri dari 23 ekor. Sebelum diberi pakan, anak mandalung ditimbang dan diberi nomor pada sayap untuk identifikasi dan mendapatkan bobot badan awal. Pemotongan dilakukan 2 kali yaitu pada umư 4 minggu dan 10 minggu.

Pengumpulan Daia

Penimbangan bobot badan dilakukan setiap minggu dengan menggunakan rumus pertambahan bobot badan berikut ini :

$$
P B B=\left(W_{2}-W_{1}\right) / t_{2}-t_{1}
$$

Dimana, PBB = pertambahan bobot badan per hari
$W_{2}=$ bobot badan mandalung pada akhir penelitian (g)
$\mathrm{W}_{1} \quad=$ bobot badan mandalung pada awal minggu (g)
$t_{2} \quad=$ waktu akhir minggu (hari)
$\mathrm{t}_{1}=$ waktu awal minggu (hari)

Analisis Data

Data yang diperoleh dianaisis dengan menggunakan "Uif + Student" (Steel dan Torie. 1991).

hasii dan pembahasan

Pertumbuhan

AMIE:MADI:A
Selama 10 minggu kegiatan penelifian, memperifatkan pertumbuhan mandalung antar perlakuan tidak menunjukkan perbedaaan yang nyata. Sementara poda pertambahan bobot badan umur 1. hari sampal dengan 4 minggu dan antara 4 minggu sampai dengan 10 minggu antar perlakuan menunjukkan perbedagan nyata ($\mathrm{P}<0,05$) pengaruh rarisum yang diberikan pada mandalung selama 10 minggu tehadap bobot badan dan pertambatian bobot badan disalikan pada tabel 1 .
Tabel 1. Rataan pertambahan bobot badan dan dan bobot bodan akhir.Mandalung selama penelitian

Parameter	Tanpa avilamisina	Aviarnisina
Bobot Badan (g)	$850,19 \pm 156,79$	$797,83 \pm 82,90$
Umur 4 minggu	$2061,88 \pm 236,93$	$2209,24 \pm 136,84$
Umur 10 minggu		$762,770 \pm 126,45$
PBB (g)	$807,350 \pm 184,20$	$1411,41^{\mathrm{b}} \pm 345,63$
Umur 4 minggu	$1211,690 \pm 329,84$	
Umur 10 minggu		

Keterangan : Superskrip yang berbeda poda baris yang sama menurjukkan perbedaan nyata ($\mathrm{P}<0,05$).
Gambar 1 di bawah ini memperfihatkan mandalung yang diberi avilamisina mengalami pertumbuhan yang cepat, walaupun bobot badan awalnya rendah dibandingkan dengan yang tanpa avilamisina. Dapat dikatakan bahwa avilamisina membanfu terjadinya compensatory growth. Soeparno (1998) menjelaskan bahwa apabila temak diberi ransum yang cukup dan bergizi, ternak tersebut mampu tumbuh dengan cepat bahkan dapat lebih cepat dari pertumbuhan normainya.

Gambar 1. Bobot bodan mingguan Mandalung solama penelitian

Gambar 2 memperlihatkan pertambahan bobot badan mandalung dimana pada uniur 4 minggu kedua kelompok mengalami pertumbuhan yang cepat, sesuai dengan hasil peneitian Ermanto (1989). Syamsuardi (1989) dan Harohap (1993). Mandalung yang diberi avilamisina sampai umur 4 miriggu mengalami peningkatan bobot badan 22,8 kali dari bobot badan awalnya, sedangkan yang kontrol hanya 19,8 kali.

Gambar 2. Pertambahan bobot badan Mandalung selama penelifian

Mandalung antara umur 1 hari - 4 minggu terjadi laju pertumbuhan akselerasi atau peningkatan kecepatan pertumbuhan, setelah itu sampai dengan umur 10 minggu mengaiami pertumbuhan deselerasi atau penurunan kecepatan pertumbuhan.

POTONGAN KARKAS KOMERSIAL

Karkas merupakan bagian tubuh setelah dikurangi bulu, darah, kepala, kaki dan organ daiam, Produksi karkas erat hubungannya dengan bobot tubuh, semakin tinggi bobot tubuh, maka produksi karkas semakin meningkat. Natasasmita et al. (1987) mengatakan bahwa nilai seekor temak ditentukan oleh persentase karkas, banyaknya proporsi bagian karkas yang bemilai tinggi dan ratio antara daging dan tulang serta kadar lemak. Hasil penelifian menunjukkan pahwa persentase karkas pada umur 4 minggu dan 10 minggu antar perlakuan berbeda nyata ($P<0.05$). Dengan bertambahnya umur, pertumbuhan juga akan bertambah dan persentase terhadap bobot potong, juga meningkat. Untuk lebih jelasnya dapat dilihat pada Tabel 2.

Perlakuan dengan penambahan avilamisina menghasilkan persentase bagian karkas dada, paha lebih kecil dari kontrol pada umur 10 minggu, Mandalung pada umur 10 minggu kelompok perlakuan menghasilikan persentase sayap lebih besar dari pada kelompok kontrol, sedangkan pada umur 4 minggu antar perlakuan tidak berbeda nyata. Bila dihubungkan dengan bobot badan maka kelompok perlakuan memiliki bobot badan yang besar, hal ini dilikuti dengan pertumbuhan sayap yang proporsional sesuai dengan besamya tubuh.

Soepamo (1998) mengatakan, bahwa pada ternak unggas persentase karkas meningkat seloma pertumbuhan, peningkatan umur, dan kenaikan bobot badan.

Tabel 2. Rataan bobot potong, bobot karkas, persentase karkas dan persentase bagian-bagian karkas Mandalung selama penellitian

Peubah	Tanpa Avilamisina		Aviamisina	
	4 minggu	10 minggu	4 minggu	10 minggu
 gram			
Potong	$889,10 \pm 138,03$	$1991,17 \pm 249,9$	$826,90 \pm 78.13$	$2205,77 \pm 135,55$
Karkos	$451,4 \pm 79,30$	$1101,2 \pm 166.2$	395.4 ± 42.8	1257.8 ± 89.5
Karkas (\%)	$50,01 \pm \pm 2.18$	$55,14^{\text {a }} \pm 2,61$	$47,78^{\circ} \pm 1,48$	$57,000 \pm 1,30$
Sayap	7.62 ± 1.10	$9,790 \pm 0.61$	7.56 ± 0.79	$17.400^{\circ} \pm 0.74$
Paho	38.790 ± 1.95	$29.13{ }^{\circ}+2.40$	$41.60^{\circ} \pm 2.60$	$26.24{ }^{\text {b }} \pm 0.96$
Dada	17.790 ± 1.28	$30.87{ }^{\circ} \pm 3.10$	$16.76{ }^{5}+1.82$	$26.97 \mathrm{~b} \pm 1.80$
Punggung	$16.28{ }^{\circ} \pm 1.40$	$14,40 \pm 1,40$	$13.94{ }^{\text {b }} \pm 1.05$	14.26 ± 1.17
Panggul	$19,52 \pm 1,77$	115.75 ± 1.24	$20,12 \pm 1.91$	15.12 ± 1.03

Keterangan : Supersikip yang berbeda pada baris yang sama menunjukkan perbedaan nyata ($\mathrm{P}<0,05$)

MEAT BONE RATIO

Persentase perbandingan daging dan tulang mandalung selama 10 minggu penelitian disajikan pada tabel 4. Pada umur 4 minggu persentase daging dan tulang terhadap bobot dada, bobot paha bawah maupun paha atas antar periakuan tidak berbeda nyata ($P>0,05$), sedangkan pada umr 10 mingu berbeda nyata ($\mathrm{P}<0,05$). Hal tersebut dopat dilihat pada Tabel 3.

Tabel 3. Rataan persentase meat bone ratio Mandalung selama penelitian

chisis.Feubah Inuf	Tanpa avilamisina		Avilámisina	
	4 minggu	10 minggu	4 minggu	10 minggu
Dada - doging tulang	$\begin{array}{r} 79,77 \pm 3,52 \\ 20,23 \pm 3,52 \\ \hline \end{array}$	$\begin{gathered} 81.92 a \pm 3.30 \\ 3 \ln =0.110 \mathrm{a} \pm 3.30 \\ \hline \end{gathered}$	$\begin{array}{r} 79.81 \pm 3,36 \\ 20,19 \pm 3,36 \\ \hline \end{array}$	$\begin{aligned} & 86.200 \pm 3.02 \\ & 13.610+3.36 \\ & \hline \end{aligned}$
Paha atas \qquad - Tulang	$\begin{aligned} & 87.16 \pm 3.89 \\ & 12.84 \pm 3.89 \end{aligned}$	$\begin{aligned} & 89,60^{\circ} \pm 1,68 \\ & 10,40^{\circ} \pm 1,68 \end{aligned}$	$\begin{aligned} & 87,31 \pm 2,13 \\ & 12,51 \pm 1,93 \\ & \hline \end{aligned}$	$\begin{aligned} & 85,82 \square \pm 3,44 \\ & 14,18 \pm 3,44 \\ & \hline \end{aligned}$
Paha bawah - Daging - Tulang	$\begin{array}{r} 78,09 \pm 2,65 \\ 21,91 \pm 2,65 \\ \hline \end{array}$	$\begin{aligned} & 82,39^{\circ} \pm 2,65 \\ & 17,62^{a} \pm 2,65 \\ & \hline \end{aligned}$	$\begin{aligned} & 79,48 \pm 3,26 \\ & 20,52 \pm 3,26 \\ & \hline \end{aligned}$	$\begin{aligned} & 83,76 \pm \pm 2,14 \\ & 16.24 \square_{ \pm} .14 \end{aligned}$

Keterangan: Superskip yang berbeda pada baris yang sama menunjukkan perbedaan nyata ($\mathrm{P}<0,05$)
Dengan meningkatnya bobot badan, pertumbuhari tutang semakin menurun, sehingga otot akan terbentuk menjadi komponen karkas relatif besar. Otot merupakan komponen tubuh yang pertumbuhannya lambat, dan ini jelas baru terlihat pada umur 10 minggu antar perlakuan. Temyata kelompok yang mendapat avilamisina persentase daging dada dan paha bawah nyata lebih tinggi dari kelompok yang tanpa avilamisina. Dengan demikian perbaikan efisiensi penggunoan pakan pada kelompok yang mendapat avilamisina diwujudkan dalam bentuk daging.

KESIMPULAN

Berdasarkan hasil penelitian maka dapat disimpulkan :

- Penambahan imbuhan pakan avilamisina dalam pakan memberikan respons nyata terhadap pertumbuhan mandalung.
- Dengan bertambahnya umur serta kenaikan bobot badan sangat berpengaruh terhadap persentase karkas. Hal ini dapat dilihat pada mandalung (kontrol maupun perlakuan) berbeda nyata pada bagian paha dan dada umur 10 mingg .
- Persentase meat bone ratio dada. paha bawah dan paha atas kelompok yang mendapat avilamisina memberi respons nyata terhadap pertumbuhan daging dibandingkan dengan kelompok yang tidak mendapat avilamisina.

Best P. 2000. Starter pig feeds: Oligosaccharides. Feed Intemational, February : 24-28. Direktorat Jenderal Bina Produksi Peternakan. 2003. Buku Statistik Petemakan. Direktorat Jinderal Bina Produksi Pelemakan.

BPS. 2003. Buku Statistik Petemakan. Direktorat Jederô Bína Produksi Petemakan. Deptan RI.
Elanco Products Company. 1990. Maxus, Surmax, Marketing Manval. Performance Enhancer for Broiler. A Division of Eli Lily Company Internotional Marketing, Indianapolis.
Ermanto C. 1989. Perbandingan perfomans itik tegal (Anas platyrhnchos), itik manila (Cairina moschata) dan hasil silangnya (Mule duck) [karya ilmiah]. Bcgor, Institut Pertanian Bogor, Fakultos Peternakan.
Harjosworo PS. 2001. Blasteran entog dan itik: Sumber daging masa depan. Trobos Ed. Juni.
Hardjosworo PS, Setioko A, Ketaren PP, Praselyo LH. Sinurat AP dan Rukmiasih. 2001. Perkembangan teknologi unggas air di Indonesia. Lokakarya Nasional Unggas Air. Clawi, Bogor,
Hammond JH. 1965. Farm Animal : Their Breeding. Growth ang Inheritance $3^{\text {od }}$ Rep. Edward Amold Ltd. London. 332p.
Harahap D. 1993. Potensi itik mandalung sebagai penghasil daging dilinjau dari berat karkas dan penilaian organoleptik dagingnya dibandingkant dengan tetuanya. [aisertasi]. Bogor : Institut Pertanian Bogor, Program Pascosarjana, Fakultas Petemakan.
Ketaren PP, Prasetyo LHMurtisari T. 1999. Karakterz produksi telur itik silang Mojosari x. Alabio. Prossiding Seminar Nasional Petemakan dan Velerinery, Pusat Penelitian dan Pengembangan Petemakan. Badan Penelitian ternak dan Pengembangan Pertanian, Departemen Pertanian.
Natasasmita S. Priyanto R, dan Tauchid M. 1987. Evalúasi daging. Fokultas Petemaka, Institut Pertanian Bogor:
Partick H dan Schaible FJ. 1980. Poultry Feeds and Nutrition. The Avi Pubishing Co.Inc. Connecticut.
Shen T Fuh. 1992. Mule duck production in Taiwan; Nutrient requirements of mule duck [buletin]. Departement of Animal Husbandry, National Tolwan University. No 328.
Soepamo. 1998. Ilmu dan Teknologi Doging. Gajah Mada University Press. Yogyakarta.
Sukańni IA, Sutedja P dan Darmadja D. 1975. Fertistas keturunan dari hasil persilangan litik dengan entog [buletin], Denpasar - Bali ; Universitas Udayana, Fakultas Kedokteran Hewan. No. 046:17-21.
Steel RD dan Torrie JH. 1991. Prinsip dan Prosedur Statistika suatu Pendekatan Biometrik. Penerbit P.T. Gramedia Jakarta.

Syamsuardi. 1989. Pertumbuhan, komposisi karkas dan lemak rongga tubuh mandalung II yang dipelihara secara semi intensif [karya ilmiah]. Bogor: Inslitut Pertanian Bogor, Fakultas Peternakan.
Unandar T. 2001. Menimbang antibiatika sebagai imbuhan pakan ternak. Panduan Seminar dan Abstrak Pengembangan Peternakan Berbasis Sumberdaya Lokal. Dies Natalis Institut Pertanian Bogor 8-9 Agustus. Bogor ; Institut Pertanian Bogor, Fakultas Peternakan.
Utomo BD. 2002. Pemanfoatan bakteri untuk kesejahteraan hewan [Lap. Khusus]. Invofet Ed. 094-Mel. Hal : 38-39.

