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ABSTRAk 

Parameter fungsi produksi yang diestimasi secara statistik, yang umumnya dilakukan dengan 
metoda estimasi Least Square (LS), merupakan parameter dari fungsi produksi rataan (average). 
Dengan cara ini, tingkat (in) efiseinsi teknis, sebagaimana disebutkan dalam teori ekonorni produksi, 
sulit untuk dihitung. Konsep estimasi fungsi produksi frontier, yang belakangan ini mulai populer, 
memungkinkan kita untuk mengestimasi tingkat inefisiensi produksi secara lebih tepat dan konsisten 
dengan teori ekonorni produksi. Fungsi produksi frontier ini dapat diduga dengan menggunakan data 
cross-section maupun dengan data panel. Ketersediaan data panel memungkinkan pendugaan tingkat 
inefisiensi produksi secara lebih konsisten dengan cukup rnenggunakan metoda modifikasi dari LS. 
Dalam tulisan ini dikemukakan konsep dan penerapan fungsi produksi frontier dengan menggunakan 
data panel dari usahatani padi sawah dibeberapa daerah produsen padi sawah dikawasan DAS Cimanuk, 
Jawa Barat. Hasil analisa memperlihatkan bahwa tingkat inefisiensi teknis dalam produksi padi sa wah 
berkisar antara 3,4 - 12 persen, atau rata-rata 6.5 persen. Dengan menggunakan asumsi tertentu, secara 
kasar dapat diduga jumlah kehilangan hasil produksi padi di J awa Barat sebesar 0.45 juta ton per tahun. 

INTRODUCTION 

A production function describes technical relationships that transform inputs 
into outputs. It also shows the maximum possible output (frontier) attainable from 
a given combination of inputs. There cannot be any point above the production 
frontier. The distance a firm lies below its production frontier measures the level 

of inefficiency. 
A production process can be inefficient in two ways. It is technically ineffi­

cient if it fails to produce maximum output from a given input bundle. It is price 
or allocatively inefficient if the marginal revenue product of an input is not equal 
to the marginal cost of that input, resulting in utilization of inputs in the wrong 
proportions for given input and output prices. A combination of these two is usually 
referred to· as total productive or economic inefficiency. 

There is, however, a discrepancy between the above definition and the one 
that is statistically estimated. The letter, which is usually referred to as a "non­
frontier" or "average" production function and estimated by ordinary least square 
(OLS), allows some firms to be above the "fitted" function. One can use the 
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"average" function to estimate technical inefficiency under a certain restrictive 
assumption. The result, however, cannot be called a pure measure of technical 
inefficency since it also includes random variability. 

The frontier production function is designed to bridge the gap by introducing 
the error term to represent an (in) efficiency measure. This paper, using a stochastic 
production frontier concept, aims to estimate the level of inefficiency on the rice 
farms in West Java. A panel Oongitudinal) data set, that is a cross-section of indi­
vidual observed over time, is used in the analysis. 

ANALYTICAL FRAMEWORK 

Stochastic Production Frontiers and Technical Efficiency 

Forsund, Lovell and Schmidt (1980), in their survey on frontier production 
functions, distinguished four types of production frontier namely (1) deterministic 
non-parametric frontier, (2) deterministic parametic frontier, (3) deterministic statis­
tical frontier, and (4) stochastic statistical frontier. This section briefly reviews the 
stochastic statistical production frontier. 

The stochastic stl!ltistical production frontier, which is commonly known as 
stochastic production frontier, was developed independently by Aigner, Lovell and 
Schmidt (1977) and Meeusen and Van den Broeck (1977). In the deterministic fron­
tier model the variation in firm performance relative to the frontier is attributed 
to inefficiency, thereby ignoring the possibility of variation due to factors not 
under the control of any firm such as weather variation, machine breakdown, luck, 
which is usually referred to as statistical noise (Forsund eta/., 1980). Combining 
these two together, as in deterministic frontiers, and labelling it as inefficiency is 
not appropriate. The statistical noise needs to be separated from the controllable 
factors that are designated as inefficiency. This is the essential idea behind the 
stochastic frontier model. 

This model, which can also be referred to as a composed error model, is 
stochastic in a sense that it capture exogeneous shocks beyond the control of firms. 
The model is described as follow: 

Yi = f (Xi;B) + ei ............................................ (E.1) 

where Yi is the maximum amount of output obtainable from Xi, a vector of non­
stochastic productive inputs of the ith firm, and B is a vector of unknown para­
meters to be estimated. In addition 

ei = vi - ui .................................................. (E.2) 
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where vi, the error component representing random noise, is assumed to be distri­
buted normally with zero mean and variance of a/, while ui, the non-negative 
error component representing technical inefficiency, is assumed to be distributed 
either with a "half nmmal" density or with an exponential density, both with mode 
at u=O. 

The major weakness of the model is its difficulty in estimating individual in­
efficiency althougli average inefficiency for the population and its variance are avai­
lable as 

E(u) = !! = a "(2/ 1T t 5 • •••••••••••••••••••••••••••••••••••••• (E.3) 

V(!!) = au2 {1 - 2/7T) ........................................ (E.4) 

Jondrow, Lovell, Materov and Schmidt (1982) show that by assuming vi in 
normal and ui is positive hal~·normal, vi and ui are independent, and that ineffi­
ciency is independent of the regressors, then an estimate of the individual inefficency 
for each firm can be obtained, although not consistently. The estimate ui is based 
on the conditional mean of ui given ei, that is: 

E(uiej) = a*[f(ei s/a*)/(1-F(ei s/o*))] - e/a* (E.5) 

where 

The symbols f and F represent the standard normal density (pdf) and cumulative 
distribution function (edt), respectively. By replacing ei with its estimate (ei) and 
o*, sby their estimates, one can estimate ui. Using this method Bagi and Huang 
(1983) as cited in Seale (1985), estimate individual efficiency for 193 farms in 
Tennessee. More recently, Battese and Coelli (1988) presented a generalization of 
this method for a given panel data of the Australian dairy farms, which will be dis­
cussed in the next section. 

Panel Data and Stochastic Production Frontiers 

The estimation of individual technical inefficiency from a set of panel data 
was done by Hoch (1955; 1962). He, however, used an "average" (non-frontier) 
function rather than frontier function. Hoch assumed that firms maximize anticipat­
ed profit, and then estimated the production parameters using covariance analysis. 

There are graet potential advantages for modifying existing frontier models 
to allow the use of panel data. Schmidt and Sickles (1984) pointed out three diffi­
culties in applying stochastic production frontier models using cross section data. 
First, one can estimate technical inefficiency of each firm but not consistently. 
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Second, separation of inefficiency measures from statistical noise depends on specific 
assumptions about the distribution of technical inefficiency. Third, the assumption 
that inefficency is independent of regressors is not valid if a firm knows its level 
of technical inefficiency. These difficulties will analogously be found in using cross­
section stochastic profit frontiers. 

With the availability of .panel data these problems can be avoided. First, if 
there are T observations on each firm, then the technical inefficiency of a particular 
firm can be estimated consistently as T tends to infinity. Second, any distribution 
of technical inefficiency need not be assumed if these are treated as firm-specific 
effects. Third, no assumption is needed regarding the independence of technical 
inefficiency and the regressors. 

This section draws heavily from Schmidt and Sickles (1984) article, with 
some modification in notation. Consider a production function as: 

yit = ao + Xit a + vit - ui. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · .(E.6) 

Here, i = 1,2 ... N indexes firms and t = 1,2 ... T indexes time period. The value 
yi1 is output of the ith farm at timet, whereas xit is a vector of K inputs. The vit 
are assumed uncorrelated with regressors and distributed iid N(O, a v2). The ui 
represent technical inefficiency and ui ~ 0 for all i. It is also assumed that ui is 
i.i.d. with mean U and variance a uP and is independent of the vit" A particular 
distribution for ui may or may not be assumed. Furthermore, the ui may or may 
not be assumed to be correlated with regressors. 

For T = 1 ( a single cross section) the model is the stochastic frontier of 
Aigner, Lovell and Schmidt (1977). ForT> 1, it is a straight forward generaliza­
tion of that model, and it fits the usual framework in the panel-data literature with 
individual effects but no time effects. The only difference from the standard panel 
data model is that individual effects are one-sided. 

The equation (3.6) can be rewritten in two ways. First, let E[uJ = ·I;! > 0, 
and define 

ao * = ao - 1! and ui * = ui - 1!. 

so that ui* are iid with mean 0, Equation (3.6) can then be rewritten as 

yit = ao.* + xi! a + vit - ui* .................................. (E.7) 

with the error terms vi1 and ui * have zero mean. Most of the results of panel data 
literature can be applied directly, except those that hinge on normality. 

Secondly, define 

aoi = ao - !!. = ao * - ui * 

and then rewrite the model into 

yit = .aoi + xi,' a + vi!' ••....••••..•••••••.••••••.•••••••••••• (E.8) 
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This is exactly a variable intercept model. This model can be estimated using either 
a dummy variable estimator or Generalized Least Square (GLS) estimator. 

Fixed Effect Model: Dummy Variable Estimator 

This estimator treats the ui as fixed, that is, it estimates a separate intercept 
for every individual firm as in (E.S). This can be done by suppressing the constant 
term and adding a dummy variable for each of theN frams or, equivalently, by 
keeping the constant term and adding (N-1) dummies. Another equivalent proce­
dure is to apply the within transformation, that is, to apply OLS after transforming 
the data in terms of deviations from the farm means. 

The advantage of the within estimator is that its consistency does not hinge 
on uncorrelatedness of the regressors and the effects. It also does not depend on 
the distribution of the effects, since in treating them as fixed it simply proceeds con­
ditionally from whatever their realizations are. The estimates of a is consistent as 
either N or T tends to infinity. Consistency of he individual estimated intercept 

requires T - ao • 

A considerable disadvantege of the within estimator is that it is impossible 
to include in the specification the time invariant regressors even though they vary 
across farms. In this case the estimated individual effects will include the effects 
of all variables that are fixed within the sample at the farm level, possibly including 
some that are not in any sense a representation of inefficiency (Schmidt and Sickles, 
1984). 

In the case of the frontier function, if N is large, we can use the fact that 
ui ~ 0 to appropriately normalize the individual effects (u) and the overall 
constant (a

0
). If N estimated intercept are ftol' i 02, •••• ?toN' simply define 

.. " ) ao = max (aoi ................................................ (E.9) 
.. " !I ui = ao - a

0
i ................................................ (E.lO) 

This definition amounts to counting the most efficient firm in the sample as 

100 percent efficient. The estimates a
0 

and ui are consistent as N and T go to 
infinity. 

Random Effect Model: GLS Estimator 

With a v 2 and a u2 known, the GLS estimator of a
0 
* and a of equation (E. 7) 

is consistent, as either Not T approaches infinity. It is more efficient than the within 
estimator in the case of N - oo and T fixed, but this difference in efficiencies 
disappears as T .- oo· • When a /'and a u2 are not know, their consistent ~timates 
need to be estimated. Consistent estimation of a / requires N - aa • Thus the 
strongest case for GLS is when N is large and T is small. If the opposite is true 
the GLS is useless, unleSJ~ a u2 were known a priori. 
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Given estimates of £, we can recover estimates of the individual firm inter­
cepts (a

0
) from the residuals, that is, the mean (over time) of the residuals of each 

individual firms. 

a. = uT 1:t a .............................................. (E.tt> 
01 It 

These estimates are consistent as T-oo, provided that estimates of a are consis­
tent Note that a_ . can be decomposed into i and u., for which concistency requires • 01 0 1 

N - oo and consistency of the l .. Another way to estimate the individual effects 
01 

(inefficiency) is by using Battese and Coelli (1986) method, which is actually a gene-
ralization of the method suggested by Jondrow et.al (1982) as described in equa­
tion (3.25). The Battese and Coelli method is presented in a slightly different nota­
tion as follows: 

tl; = 1 - [1 - F( a• - m/ a*)] exp(-m; + a*/2) 
[1 - F(-m/ a"')] 

where 

a "' = a 2 a 2 ( a 2 + T 0 2)-1 
u v v u 

m. = - ( a 2 e.) ( a 2 + a 2 /T)-1 
1 u -1 • u v 

A 

~i = aoi - 1:! 

(E.12) 

Note that u and aoi have been described in equation (E.3) and (E.ll) respectively, 
while F is a symbol for standard normal cumulative distribution function (cdf). 

The important advantage of GLS estimator relative to within estimator in the 
present context is not efficiency, but rather the ability to include the time invariant 
regressors. In cases where time-invariant regressors are relevant, this is important 
so that their effects do not contaminate measured efficiency. 

Choice Between Fixed or Random Effect Model 

The choice between these two has nothing to do with the· frontier model as 
such. The only problem with the FE framework in the context of a production or 
cost (profit) frontier is that the firm-specific effects pick up the effect of variable 
that differ across firms but are invariant over time. These effects are not in any 
sense a representation of inefficiency. This might be one of the reasons why estimat­
ed inefficiencies in the FE models are much greater than in the RE models. 

One way to decide whether to use a fixed effects or random effects model 
is to test the null hypothesis that there is no correlation between the individual 
effects and the included explanatory variables against the alternative hypothesis that 
such correlation exists. For this purpose, we can use either Hausman test (1978) 
or an asymptotically equivalent test suggested by Mundlak (1979). If the null hypo­
thesis holds we use the random-effects model, otherwise we use the fixed-effect 
model. 
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DATA SET AND MODEL SELECTION 

The Data Set 

The data set used in this study was collected by the Agro Economic Survey, 
as part of the Rural Dynamic Study in the rice production area of the Cimanuk 
River Basin, West Java, and obtained from the Center for Agro Economic Rese­
arch, Ministry of Agriculture, Indonesia. 

The survey area, which is the rice production area in the Cimanuk river 
basin, is chara\.i:erized by irrigated rice farms and an almost uniform agroclimate. 
It covers six desa (village) located in five kabupaten (the administrative unit bet­
ween district and province level), namely: desa Wargabinagun in kabupaten Cirebon, 
desa Lanjan in kabupaten Indramayu, desa Gunung Wangi and Malausma in 
kabupaten Majalengka, desa Sukaambit in kabupaten Sumedang and desa Ciwangi 
in kabupaten Garut. 

In 1977, the survey wan conducted twice, that is at the beginning and the end 
of the year. The first survey gathered information on farming practices in the wet 
season of 1975/1976 and dry season of 1976. The second survey covered farm house­
hold activities in the wet season of 1976/1977. A similar survey was undertaken 
in 1978 to cover farm management activities in the dry season 1977. The resurvey 
of 1983 to the same areas and same farmers was conducted with a different 
emphasis on labor utilization, asset holding, and land tenure arrangements. 

The data net generated by the survey is commonly referred to as a panel data 
set, since the individual farmer was observed over time .. This data set will be used 
in its advantage manner, that is in the framework of panel data analysis discussed 
in the next chapter. To date, several studies have used .these data. However, these 
studies, Sugianto (1982), Hutabarat (1986) and Gunawan (1987) among others, 
analyzed these data using separate cross-sectional analysis or by simply pooling the 
data. 

The analysis of this study uses the so called balance design, where individuals 
are obeserved for the same lengths of time. Using the individual identification number 
to check and match individual respondents, only 171 respondents were found to 
have been continuously recorded for six seasons (Table 1). Some respondents, for 
various reasons, were replaced by the new ones in the next survey. Others were not 
recorded in a particular planting season since they were absent. All these respon­
dents were excluded from the analysis. 
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Table 1. Number of respondents in each Sample Village 

Desa Kabupaten Number of 
(Village) (Regency) observation 

W argabinangun Cirebon 19 
Lanjan Indrarnayu 24 
Gunung Wangi Majalengka 37 
Malausma Majalengka 33 
Sukaarnbit Sumedang 22 
Ciwangi Garut 36 

Total observations 171 

Model Specification and Functional Form 

The total output per farm, measured in kilograms of rough rice, is the depen­
dent variable, while the total quantity of seed, fertilizer labor and farm size of the 
corresponding farm household, are the independent variables. By assuming that 
farmer is maximizing anticipated profit, all of the production inputs can be treated 
as exogenous variables, and therefore, the distinction of whether a particular input 
is variable or fiXed is irrelevant. 

In logarithmic form, the per farm Cobb-Douglas production function to be 
estimated is specified as follows: 

ln Yit = ln ao + 1: k ~ lnXkit + a6DPit + ~DVlit + agDV2it 
+ ~DSS + aupSIZE + a11DR1 + a1pR2 
+ a1pR3 + a1pR4 + a1pR5 + vit - ui ............... (E.13) 

where: 

1 ,2, ..... 171 subscript for individual observations 
t 1 ,2, ..... 6 subscript for time 
k 1,2, ..... 5 subscript for production inputs 
v the error component represents random noise, and is assumed to 

be distributed normally with zero mean and variance of a /. 
u the non-negative error component representing techiiical ineffi-

ciency. 
lnY lnKGOUT: total production in the form of rough rice in kilo-

gram. 
lnX1 = lnKGS :. the amount of seed (kg) 
lnX2 = lnKGN : the amount of urea (kg) 
lnX3 = lnKGP : the amount of TSP (kg) 
lnX4 = lnLAB : the amount of labor (hours) 
lnX5 lnHA : area planted with rice (ha) 
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DP 

DVl 
DV2 

Note 
DSS 
DSIZE 

DRl 

DR2 

DR3 

DR4 

DR5 

Note 

dummy variable of pesticide use, equals 1 if farmer uses pesticides 
and equals 0 otherwise 
dummy HYV variety, equals 1 if HYV, zero otherwise 
dummy of Mixed Varienties (MV), equals 1 if mixed varieties are used, 
zero otherwise. 
traditional variety (TV) is the control 
dummy variable of season, equals 1 if wet season, zero otherwise 
dummy variable of farm size, equals 1 if farm size greater than 0.5 
hectar, zero otherwise 
dummy village, equals 1 if desa Lanjan kabupaten Indramayu, zero 
otherwise 
dummy village, equals 1 if desa Gunung Wangi kabupaten Majaleng­
ka, zero otherwise 
dummy village, equals 1 if desa Malausma kabupaten Majalengka, 
zero otherwise 
dummy village, equals I if desa Sukaambit kabupaten Sumedang, 
zero otherwise 
dummy village, aquals if desa Ciwang1 kabupaten Garut, zero 
otherwise 
Wargabinangun (kabupaten Cirebon) is the control village 

Estimation Methods 

Three estimators were used in this analysis, namely the ordinary least square 
(OLS), the dummy variable (within) and the EGLS estimator. Recall that only the 
last two estimators yield a frontier function, while the OLS, which is intended for 
comparison purposes, gives the usual non frontier function. The OLS estimator is 
obtained simply by applying the ordinary least squares method to the pooled data. 
The dummy variable estimator, hereafter referred to as within estimator, is obtained 
by applying OLS to the transformed data, that is after transforming the data in 
terms of deviations from individual means. The EGLS estimator, which can be 
viewed as a weighted average of the within and the between estimator, is calcula­
ted by first transforming the data in terms of deviations from a fraction of t}le indi­
vidual means and than running OLS on the transformed data. 

One way to decide whether to use fixed effects (FE) or random effects (RE) 
model is to test the null hypothesis that there is no correlation between the indivi­
dual effects and the included explanatory variables against the alternative hypothesis 
that such correlation exists. For tllis purpose, we can use either Hausman test (1978) 
or an asymptotically equivalent test suggested by Mundlak (1978). 
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The individual level of technical inefficiency is measured using Battese and 
Coelli (1986) method as described in (E.l2). The methods described in (E.9 and 
E.lO) for FE model and in (E.11) for REmodel will also be employed for compari­
son purposes. 

RESULTS AND DISCUSSION 

Three statistical tests were performed. The first test is related to the fixed 
effect (FE) specification to test the null hypothesis that individuals have the same 
intercept against the alternative hypothesis that their intercepts are not the same 
(see Judge et.al., 1982). The computed F-statistic equal 1.4818 and the critical 
F0_05(170, 845) equals 1.2214. Thus, the null hypothesis is rejected at the 0.05 
significance level. 

The second test is the LM test, related to random effect (RE) specification 
to test the presence of individual random effects by testing the null hypothesis that 
a u2 equals zero (see Judge et.a/., 1982). The computed LM statistic equals 9.5864 

and the critical Chi2(1)0_05 equals 3.8415. Since the LM statistic is larger than its cri­
tical value, we can therefore reject the null hypothesis. This implies that individual 
random effects exist. 

The thrid test was perfomed on the null hypothesis that there is no correla­
tion between the individual effects and the included variables against the alternative 
hypothesis that such correlation exists. The results determine whether to use RE 
or FE specification. The Mundlak test (1978) was used in this case. The computed 
F-statistic is 1.5378 while the critical F0_05 (8, 1009) is 1.9384. Thus the REmodel 
rather than the FE model is justified statistically. Note that in performing the Mund­
lak test, only the time-varying variables which are statistically significant were 
included. 

In order to examine the difference between OLS, within and GLS estimators, 
we present the estimation results in appendix 1. The individual intercepts of the 
within estimator are not presented here. The results show that the parameter esti­
mates of the GLS lie between the corresponding parameter estimates of the other 
two estimators. The GLS estimator gives the best fit of the production function 
compared to the others. The computed coefficient of multiple determination (R2) 

of the GLS estimator equals 0.9967, which is higher compared to 0.8843 of the OLS 
and 0.7497 of the within estimator. 

The sign of the cofficients estimated by OLS and GLS is the same and the 
magnitudes are very close to each other. This is not too surprising, since the (1 - w) 
is very small, and therefore running LS regression on the transformed data (GLS 
estimator) yields.similar results to running LS regression on the original data (OLS 
estimator). Note that "w" measure the weight given to the between-individual 
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variation. In the covariance (within) estimator, this variation is completely ignored 
(w = 0), while in the OLS estimator this variation is completely incorporated (w = 1). 

The results also show little difference in magnitude between the GLS estimator 
and corresponding estimate of the within estimator, and no difference in the sign 
of the estimate. This is consistent with the result of the model specification test pre­
viously described. If the null hypothesis the E{X'u} = 0 holds, and in fact it is not 
rejected by the test, the GLS estimator should not be very different from the within 
estimator. The significant difference between these two estimators indicates that 
the alternative hypothesis holds. Tl].is is the basic idea underlying the Huasman test, 
or equivalently the Mundlak test. 

Production Elasticity 

This following discusion will focus only on the GLS estimates. However, 
some comparisons to the within estimates might be made. Before, proceeding to 
production elasticities, let us first interpret the coefficient estimates of the .dummy 
variables. The dummy variable for pesticide use is not significant, indicating the 
use of pesticide does not have any effect on the level of production. It was reported 
that during survey periods no significant crop damage due to insect attack or plant 
diseases occured in the study area. The dummy variables of HYV and MV are sig­
nificant at the O.Ollevel. Thus, farmers with HYV and MV produce more output 
than TV farmers. This is consistent with a priori expectation. 

The season dummy has a positive sign and is significant at the 0.05 signifi­
cance level. This indicates that the level of production is greater in the wet season 
than in the dry season. This is understandable because the soil moisture content 
in the wet season is usually more optimal for plan growth than in the dry season. 
Thus, the lack of water during the dry season is possibly the key seasonal yield dif­
ference. The difference in the level of production is represented directly by the coef­
ficient for the season dummy. 

The regression coefficient for the farm size dummy is not significant, indicat­
ing that there is no significant difference in productivity between small and large 
farmers. The region dummies representing individual non-specific time invariant 
variables such as climate and soil quality, are not significantly different from zero. 
This result indicates that there is no signifant difference, statistically, in the level 
of production between regions. The natio-wide rice intensification program (BIMAS/ 
INMAS), which has already been implemented intensively since the early 1960's, 
particularly in West Java, could be the main reason. 

The interpretation of a Cobb-Douglas production function is very simple and 
straightforward, sirice the regression coefficients directly represent the production 
elasticities or the corresponding independent variables (inputs). Appendix 1 shows 
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that all input coefficients have correct signs and are significantly different from zero 
at the 0.01level. The seed coefficient of 0.1300, indicates that a one percent increase 
in quantity of seed, other things being f"IXed (ceteris paribus), will result in 0.13 per­
cent increase in the level of rice production. 

The production elasticities with respect to urea and TSP fertilizer equal 0.1110 
and 0.0778, respectively, and both are significant at the O.OOllevel. The result shows 
that rice is more responsive to N fertilizer than P fertilizer. The slow decomposi­
tion of phosphorus relative to nitrogen in the soil could be the reason for this diffe­
rence. Thus the paddy fields may have suffi~ient phosphorus, but insufficient 
nitrogen, resulting in a relatively smaller yield response from additional phosphorus 
compared to yield response from additional nitrogen. 

The production elasticity with respect to labor is 0.22. This means that a one 
percent increase in labor hours will increase the production level by 0.22 percent. 
Similarly, the interpretation of the production elasticity with respect to land is that 
a one percent increase in area cultivated per household will result in 0.47 percent 
of increase in the level of production, indicating the condition of diminishing 
marginal returns to land. 

Production Efficiency 

Let us now turn to technical inefficiency measures. Individual level {)f technical 
inefficiency is estimated using three different methods. The first method obtains 
individual technical inefficiency by differencing the individual intercepts from the 
intercept of the most efficient farm, as in equation (E.9 and E: 10). The second 
method is based on the residual of the EGLS estimator as presented in equation 
(E.ll). The third method is the one suggested by Battese and Coelli (1985) as pre­
sented in equation (E.l2). Note that these methods, particularly for the first two, 
give consistent estimates of individual effects (u) only if both N and T are large. 
Since in our case T is relatively small, the consistency of the estimates of ui is ques­
tionable. The first two methods do not use any distributional assumptions regard­
ing ui, while the third method uses a half-normal distribution with mode at ui = 0. 

The first two methods give much larger estimates than the third one. In the 
case of the first method, the estimate of ui may always be larger than the others 
since it includes the effects of time invariant variables which could not be included 
in the model. Given the obvious disadvantage ofthe first two methods, their estima­
tion results are not discussed. However, it is important to note that although the 
magnitudes of these three estimators are quite different, the individual ranks based 
on the level of efficiency are quite simil.ar. 

Estimated technical (in) efficiency of individual farms is not presented in this 
paper. The range of technical inefficiency using the third method (E.12) is 3.4 per-
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cent - 12 percent, with the mean of 6.5 percent. With mean is 7 percent if the calcula~ 
tion is based on equation (E.3). This figure tells us that rice farms in West Java 
are, on the average, 6.5 percent technically inefficient or 93.5 percent technically 
efficient. One could also interpret that the fitted individual production function is 
3.4 percent - 12 percent, or 6.5 percent on the average, below the frontier produc~ 
tion function. Given the intensive nature of wetland rice farming in 'west Java (since 
rice production technology has long been and widely implemented in this region) 
this relatively small figure of technical inefficiency is reasonable. The figure, 
presumably would be much greater in the case of dryland rice farming since the 
government has given relatively less attention to intensifying dryland farming. 

Policy implications of the efficiency measure are debatable. Some advocates 
to frontier analysis claim that a firm can move from the interior of the production 
function surface to the frontier without any cost to the firm. They assert that better 
use of the existing technology in terms of cultivation and crop-management practices 
will definitely incFease yield. They do not, however, specifically address the ques­
tion of how this can be achieved. On the other hard, nonadvocates would argue 
that free correction is very unrealistic, since movement to frontier requires adjust­
ments of factors of production including management skills which could be regar­
ded as a fixed factor. Improving management skills is of course not without cost. 

Table 2 shows that no significant difference in the level ~echnical inefficiency 
between small farms and large farms; small farms may or may not be more techni­
cally efficient than large farms or vise versa. This is consistent with the regression 
results which yield a coefficient on the farm size dummy variable not significantly 
different from zero. Therefore, it seems reasonable to interpret the mean of techni­
cal inefficiency level (6.50Jo), as a per hectare output loss due to technical ineffi­
ciency. Alternatively, we can simply reestimate a per hectare production frontier 
and find buth the mean and the individual level of technical inefficiency. 

Assuming that the estimated frontier production represents the existing rice 
production technology in West Java, one could then roughly estimate the total 
annual rice production losses due to technical inefficiency in this region. Note, 
however, that this is very rough estimate and is solely intended as an illustration 
purposes. Given rice yield figure (4000 kg/ha) and the annual harvested area of 
rice farms in West Java (1.74 million hectares) in 1983, we get the estimated figures 
of 260 kg per hectare and 0.45 million ton annually of rice production losses. Thus, 
better use of existing technology of rice production provides an opportunity to 
somewhat increase rice yield and total rice production in West Java. 



Table 2. Frequency distribution of farmers based on the level of technical inefficiency from Cobb-Douglas 
production frontier 

Range of technical IIJo farms Olo from 
inefficiency ~ 0.5 ha >0.5 ha total frame 

~ 50fo 13.4 13.6 13.5 

5 IIJo < u ~ 100Jo 83.5 84.1 83.6 
100Jo < u ~ 1511Jo 3.1 2.3 2.9 

Total% 100 100 100 
Total farms 127 44 171 

Let us now evaluate allocative efficiency of the input use. A farm is allocati­
vely efficient if the input use maximizes profit, that is if the value of marginal pro­
duct (VMP) of particular input equals its marginal factor cost (MFC). This condi­
tion implies that at the point of profit maximization, the ratio (d) of VMP to MFC 
for each input is equal to one. This also means that the last dollar spent on each 
input must return exactly one dollar, and most if not all previous units will have 
given back more than a dollar (Debertin, 1986). The accumulation of the excess 
dollars in returns over costs represents the profits or net revenues accruing to the 
farm. 

A simple evaluation for allocative inefficiency can be conducted by calcula­
ting the "d" ratio for individual farm based on the estimated production function 
and the price levels reported in the survey. There is no intention to interpret the 
level of allocative (in) efficiencies for an individual farm. Seasonal average and grand 
aver.age values ofthe "d" ratio for each input are presented in Table 3. On the (grand) 
average the "d" ratio for seed, urea, TSP, and labor are 10.34, 3.09, 14.60, and 
0.89 respectively, indicating underutilization or seed and fertilizers and overutiliza­
tion of labor. This, however, does not necessarily mean that farmers do not attempt 
to maximize profits, rather it may mean that farmers, for various reasons, were 
not able to maximize profit. 

Table 3. Allocative inefficiency measure ("d" ratio) inrice production in West Java. 

Season Seed Urea Phosphate Labor 

W-75/76 12.04 3.74 16.74 1.06 
D-76 11.45 3.79 19.38 0.93 
W-7.6177 8.58 2.46 17.00 0.78 
D-77 7.39 2.97 16.11 0.74 
W-82/83 10.67 2.58 6.03 0.85 
D-83 11.92 3.04 12.37 1.03 

Average 10.34 3.09 14.60 0.89 
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CONCLUSION 

This paper has demonstrated the application of the stochastic production fron­
tier model for estimating technical efficiency on the rice farm in West Java. This 
paper also described the potential advantages for modifying existing frontier 
models to allow the use of panel data. Some major findings and conlusion are as 
follows: 
1. There is no statistically significant difference in the level of production between 

regions. This is not surprising given the fact that Bimas/Inmas program have· 
been intensively implemented in nearly all of the West Java province, particularly 
in the regions covered in the survey which are major rice production areas. 

2. The dummy variable for farm size (i.e. small or large farm category), is not 
significantly different from zero, indicating that there is no significant difference 
in the productivity level between small and large farms. In other words, small 
farms may not be more productive than large farms. 

3. The dummy variable for season has a positive sign and is statistically significant 
at 0.05 significance level, indicating that the level of production for wet season 
is greater than that for the dry season. The lack of water availi:tbility during the 
dry season due to in appropriate irrigation facilities is the key reason for this 
seasonal yield difference, as reported in the survey. 

4. The dummy variables for varieties, HYV and MV, are statistically significant 
at 0.01 significant level, with positive signs. This strongly indicates that farms 
with HYV and MV produce more output that TV farms, which in consistent 
with a priori expectations. 

5. The production elasticities with respect to seed, labor, land urea and phosphate 
fertilizer are 0.1304, 0.2211, 0.4676, 0.1110 and 0.0778, respectivelly, and are 
statistically at 0.01 significance level. Thus, a one percent increase in the amount 
of each ot these inputs, ceteris paribus, will increase the level of production by 
that percentage amount, respectively. The production elasticity with repect to 
urea fertilizer is greater than the elasticity with respect to phosphate fertilizer. 
This finding could be used to support the argument for differentiating the prices 
of these two fertilizers, if the government's primary concern is to gradually 
reduce fertilizer susidies. 

6. The range of individual technical inefficiehcy is 3.4 percent - 12 percent with 
the mean 6.5 percent. These figures simply tell us that the rice farms in West 
Java are, on the average, 6.5 percent technically inefficient or 93.5 percent 
technically efficient. Using rice yield for the 1983 dry season (4000 kg/hectare) 
and the figure of total annual harvested area in West Java (1.74 million hectare), 
the estimate of yield loss was 260 kg per hectare, and the total quantity of 
production loss would be about 0.45 million tons annually. 
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7. This study confirms that farmers in the study area are not able to optimally 
allocate the production inputs. There is a tendency that farmers underutilize 
both seed and fertilizers, but overutilize labor. 
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Appendix I. Estimated parameters of the Cobb-Douglass production function 

Independent variables Estimation methods 

OLS Within GLS 

Constant 5.0868*** 5.0690* .. 
(0.1916) (0.1938) 

LKGS 0.1339*** 0.1176*** 0.1304*** 
(0.0271) (0.0271) (0.0271) 

LKGN 0.1175••• 0.0878*** 0.1110*** 
(0.0175) (0.0193) (0.0179) 

LKGP 0.0735*** 0.0912*** 0.0778* .. 

(0.0114) (0.0116) (0.0115) 
LLAB 0.2159*** 0.2378*** 0.2211*** 

(0.0288) (0.0296) (0.0290) 
LHA 0.4759* .. 0.4323*** 0.4676*** 

(0.0318) (0.0333) (0.0321) 
DP 0.0066 0.0325 0.0127 

(0.0284) (0.0293) (0.0286) 
DV1 0.1743*** 0.1768**" 0.1756*** 

(0.0385) (0.0377) (0.0383) 
DV2 0.1389*** 0.1792**• 0.1477*** 

(0.0541) (0.0531) (0.0539) 
DSIZE 0.0198 0.0881** 0.0349 

(0.0359) (0.0400) (0.0368) 
DSS 0.0496"* 0.0555*** 0.0503** 

(0.0218) (0.0196) (0.0211) 
DRl -0.0505 -0.0519 

(0.0435) (0.0499) 

DR2 -0.0403 -0.0465 
(0.0546) (0.0591) 

DR3 -0.0640 -0.0736 
(0.0575) (0.0621) 

DR4 0.0240 - 0.0118 
(0.0527) (0.0585) 

DRS 0.0801 0.0734 
(0.0557) (0.0602) 



Appendix 1. (continued) 

Independent variables 

av2 

a2 
0 2 

u 

w=a/a 
(;l = 1- w 

E(u) 

F-Statistic 
R2 

N (individuals) 
T (seasons) 

OLS 

514.70 
0.8843 

171 

6 

Estimation methods 

Within 

0.1069 

304.34 
0.7497 

171 

6 

Variable definition can be seen in chapter 4 or appendix 5.4 
Figure in parentheses are standard deviations 
,.,.. statistically significant at 01 =- 0.01 

... statistically significant at 0: = 0.05 
• statistically significant at 0: = 0.10 

36 

GLS 

0.1069 
0.1526 
0.0075 
0.8372 

0.1628 
0.071 

19208.10 
0 .. 9967 

171 

6 


