ASAP CAIR SEBAGAI ANTI OKSIDASI LPIDA

 CAKALANG (Kalsuwonus pelamis) ASAR SELAMA PENYIMPANANBoetje Rumahrupute
Peneifif BPTP Maluku

Abstract

ABSIRAK Penelitian inil bertujuan untuk mengetahul efekilvifas antl oksidan asap colr untuk menghambat oksidasi leniak stik cakalarg asar selama penyimpanan untuk semua periakuan stik dipanaskan dalam oven, didinginkan pada suhu kamar, diberl wadah styrofoam, alikemas dengan plastik "saran" dan dilsimpan pada suhu kamar. Dari hasi penelfilan menunjukkan bahwa perlakuan perendaman dengan konsentrasi asap cair 40% dalam lantan kuring 10.5% seloma 10 menit sampai akhir peryimpanan (sembilari hiari) dópot ménghambat oksidasi lipida dengan niloi EPA, DHA, TBA asam lemak bebas dan lemak total masing-masing 6.45 \%, 19.44 \%, 1.47 mg MA/kg, 12.17 \% dan 510 \% b.b.

Kata Kuncl: asap call, ontl oksldan, oksldasilemak, cakalang asar.

PENDAHULUAN

Penggunaan asap cair sebagai ganti pengasaran cakalang (Katsuwonus pelamis) asar di Maluku perlu disosialisasikan pada nelayan pengolah cakalang asar, karena selain mudah alaplikasikan, dapat memperpanjang umur simpan serta dapat melindungl kansumen dari bahan karsinogenaik seperti yang dihasilkan pada metode tradisional. Menurut Rumahrupute et al (2000), stik cakalang yang diolah dengan apikasi asap cair sampai akhir penyimpanan (sembilan hari) mempunyai sifat sensoris warna coklot, bau dan rasa asdap tajam serta tektur yang agak keras, kadar air 38.44 \%, TVB 29.79 mg N \%, pH 5.41, pola protein tidak berubah (enam pita) dan kapang 9.3×10^{2}.

Asap cair mengandung senyawa fenol selain mempunyal kontribusi terhodap rasa asap juga berperan sebagai anti oksidan utama pada pengolahan makanan. Peranan oksidatit dari senyawa fenol terutama 2.6 -dimektoksifenol, 2.6 dimetil-4-etiol fenol yang berperan sebagai donor hidrogen terhadap radikal bebas dan menghambat reaksi rantai (Hollenbeck, 1979; Pzscola, 1995; Daun, 1989, Ladikos and Lougovois, 1990 dan Girand, 1992).

Tujuan dari penelition ini adalah untuk mengetahui efekififas anti oksidan asap cair untuk menghambat oksidasi lemak stik cakalang asar selama penyuimpanan.

BAHAN DAN METODE

Bahan

Bahon utama yang digunakan dalam penelitian ini adalah ikan cakalang (Katsuwonus pelamis) sebayak 90 ekor yang masih segar dengan bobot rato-rata $3 \mathrm{~kg} /$ ekor dari hasil tangkapan nelayan di Kabupaten Cilacap Jawa Tengah pada bulan Oktober 1997 dengan nilai TVB $20,2 \mathrm{mg} \mathrm{N}$ \%. lkan cakalang yang baru didaratkan, dipilih yang masih segar, dicuci, disususn dan dilapisi dengan hancuran es selanjutnya cilbawah ke Laboratorium Fakultas Teknologi Pertanian Universitas Gadjah Madah Yogyakarta untuk diolah dan dianalisa.

Bahan tambahan yang digunakan adalah asap cair yang berasal dari hasil pirolisis ten,, u urung kelapa pada suhu $400^{\circ} \mathrm{C}$, diperoleh dari Fakuiltas Teknologl' Pertanian Universitas Gadjah Madah Yogyakarta. Sebagai bahan pengemas digunakan plastik "saran" dengan wadah styrofoam sedangkan pemanasannya menggunakan oven tidak berasap.

Metode Penelition

Ikan cakalang yang felah dipotong melintang berbentuk stik dicuci kemudian dibagi manjadi empaty bagian, satu bagian disuntik (A_{0}) dan baglan lainnya direndam (A_{1}), masing dengan larutan kuring (Bo) dan asap cair 40 \% yang ditambahkan larutan kuring $10,5 \%$ (B_{1}). Setelah selesai penyuntikan dan perendaman, stik tersebut ditiriskan selaına 20 menit. Stik diatus di atas rak-rak supoya merata di oven dan dipanaskan pada suhu $40-50^{\circ} \mathrm{C}$ (untuk satu jam pertama), enam jam berikutnya berkisar antara $80^{\circ} \mathrm{C}$ diteruskan dengan suhu $40-50^{\circ} \mathrm{C}$ pada satu jam terakhir dan dianalisa selama sembilan hari penyimpanan $\left(26-28^{\circ} \mathrm{C}\right.$] dengan interval penguian tiga hari.

Uij/anailsis yang dilakukan terdiri dari:

- Kadar lemak (Apriyantono et al, 1989)
- Profil asam lemak
- Ekstraksi lemak (Bligh and Dyer, 1959)
- Metilasi asamilemak (Adnan, 1995)
- Nilai TBA (Rahario et al, 1992)
- Kadar asam lemak bebas (Apriyantono at el, 1989)
- Stabilitas oksidasi lemak dengan rencimen (Burrera et al, 1992)

Analisa statistik dilakukan dengan menggúniakan Rancangan ACAN Lengkap pola factorial dengan dua kali ulangan. Data dianalisa dengan Sidik Ragam (Anova) dan dilanjutkan dengan uil Beda Nyata Jujur (BNJ) Honestly Significant = (HSD) menurut Steel and Torie (1981).

HASIL DAN PEMBAHASAN

Dari hasil analisis statistik terhadap penggunaan konsentrasi asap cair $13 \% .20 \%$ dan 40% dengan lama perendamon 5,10 dan 15 menit dalam larutan kuring 10.5 \% diperoleh bahwa asap cair 40% dengan lama perendaman 10 nmenit stik cakalang asar dengan profil asam lemak dengan umur simpan smbilan hari (Tabe! 1) dan kromatografi (Lampiran 1-6). Menurut Rumahrupute et al (2000), stik cakalang yang dialah dengan aplikasi asap cair sampai akhir penyimpanan (sembilan hari) mempunyai sifat sensoris wama coklat, bau dan rasa asdap tajam serta tektur yang ogak keras, kadar air 38.44 \%, TVB 29.79 mg N \%. pH 5.41 , pola protein tidak berubah (enam pita) dan kapang 9.3×10^{2}.

Tabel 1. Prof asam lemak ($\%$ relatil) stik ikan cokaiong segar dan asar yang diperlakukan dengan dan atnpa asap cair selama penyimponan

Asam lemak	Perlakuan																
	Segar	- Tanoa osap coir								(\%)							
)											
		tama penvimpanan (harl)															
		0	3	6	9					0	3	6	9	0	3	6	9
C160	14.94	17.03	18.74	-	.	17.05	18.08	18.39	18.82	18.35	18.56	${ }^{1} 18.35$	17.84				
C180	5.08	6.64	7.71	.	-	6.21	6.57	7.23	6.25	7.79	6.90	7.18	6.95				
C18-1	17.22	11.18	15.26	-	-	11.48	13.73	13.78	13.38	12.84	13.22	14.21	14.54				
C18-2	1.64	2.07	2.91	-	-	2.07	1.86	1.98	2.33	1.77	2.17	1.93	2.46				
C18-3	0.29	0.58	0.37	.	-	0.58	2. 0.69	0.41	0.63	0.66	0.77	0.54	0.61				
C200	0.27	0.43	0.37	-	-	0.40	0.36	0.40	0.53	0.63	0.33	0.32	0.92				
C20-1	0.68	1.56	1.55	-		1.71	0.81	1.23	1.25	0.98	1.20	1.31	0.95				
C20-4	5.96	2.70	4.56	-	-	3.17	4.21	4.57	4.06	3.93	3.98	4.15	4.22				
EPA	5.10	5.67	5.38	.	-	6.97	6.80	6.87	6.45	6.73	6.74	6.44	5.64				
DHA	29.86	23.65	24.07		.	23.97	21.17	21.41	19.44	23.30	21.10	20.17	17.60				

Dalam penelifian ini, jenis asam lemak yang dijacikan sebagai indikator ketahanan lipida terhadap oksidosi selama penyimpanan stik cakalang asar adalah EPA dan DHA. Kadar EPA stik cakalang asar yang diperlakukan tanpa asap cair pada hari ke enam dan sembilan tidak dilakukan analisa karena pada hari ke tiga stik cakalang asar telah berjamur. Menurut Rumahrupute et al (2000). stik ikan cakalang dengan perlakuan penyuntikan menggunakan asap cair dengan larutan kuring dan perendaman dalam larutan kuring mengalami penurunan mutu dengan laju yang paling cepat sehingga pengamatan organoleptik terhadap produk terpakasa diakhiri pada hari ke tiga karena sudah ditumbuhi kapang.

Penurunan kadar lemak EPA dan DHA pada stik cakalang asar berlangsung lambat dan relatif stabil sampai penyimpanan hari ke enam. Hal ini diduga karena fenol terdifusi dan terabsorbsi ke daging kan sehingga efektiftos anti oksidan dapat berfungsi menghambat oksidasi asam lemak (Gambar 1, 2 dan 3). Menurut Gracea Mesa et al (1993), stabiiftas lemak tergantung dari faktor-faktor intrinsik seperti jenis lemak, jenis asam lemak, anti oksidan dan faktor-faktor lingkungon (suhu, cahaya, oksigen dan bahan pengemas).

Kadar asam lemak bebas stik cakalang segar setelah perendaman dengan asap cair 40% dan 20% dalam larutan kuring 10.5 s selama 10 menit masing-masing $6.93 \%, 7.90 \%$ dan 8.73 \%. Kadar asam lemak bebas mengalami kenaikan selama penyimpanan (Gambar 4). Hal ini diduga selama proses pemanasan terjadi proses oksidasi dan hidrolisis. Menurut Bettran and Moral (1991), selama pengasapan ikan sardin terjadi fenomena oksidasi dan hidroblisis sehingga menyebabkan peningkatan proporsi asam-asam lemak bebas dan penurunan proporsi trigesinida terutama fosfolipida.

Perubahan konduktivitas stik cakalang tanpal asap cair dan dengan asap cair 20% dan 40% delam larutan kuring 10.5% yang dicapai selama dua belas jam masing-masirig $45.00 \mu \mathrm{~S} / \mathrm{cm}, 34.75 \mu \mathrm{~S} / \mathrm{cm}$ dan $32,45 \mu \mathrm{~S} / \mathrm{cm}$. Perubahan conductivitas terendah terjad pada stik cakalang dengan konsentrosi asap cair 40% dan yang tertinggi pada stik cakalang tanpa asap cair. Dengan demikian suhu dan aliran oksigen mempercepat oksidasi dari asam-asam lemak: sehingga mengalami dekomposisi secara cepat menghaslikan senyawa-senyawa yang dapat merubah conduktivitas air deionisosi.

Dapat dijelaskan bahwa asop cair tempurung kelapa yang terabsorbsi dan terditusi untuk menghambat laju oksidasi, seperti terihat pada nilai $T B A \quad 0.82 \mathrm{mg}$ MA/kg dan 4.75 mg MA/kg masingmasing untuk konsentrasl asap cair $40 \%, 20 \%$ dan tanpa osap cair.

KESIMPILAN DAN SARAN

1. Perlakuan perendaman dengan konsentrasi asap cair 40 \% dalam larutan kuring 10.5% selama 10 menit sampai akhir penyimpanan (sembilan hari) dapat menghambat oksidasi lipida dengan nilai EPA. DHA, TBA, asam lemak bebas dan lemak total masing-masing $6.45 \%, 19.44 \%, 1.47 \mathrm{mg} \mathrm{MA} / \mathrm{kg}, 12.17 \%$ dan 510% b.b.
2. Perubahan konduktivitas terendah selama dua belas jam terjadi pada stik cakalang asar dengan konsentrasi asap cair 40% dalam larutan kuing 10.5% selama 10 menit dan yang tertinggi pada
perlakuan tanpa asap cair.

daftar pustaka

Adnan, M. 1995. Melode Anolisis Bahan Makanan dengan Kromatrografi. Fokultos Teknologi Portanian UGM. Yogyakarta. Apriyantono, A. D. Fordiaz., N.I Puspitasari.. Sudarwati dan S. Budiayanto. 1989. Peturiuk Laboraiorium Analis's Pangan. Departemen Pendidikan dan Kebudayaan. Direktorat Jenderal Pendididkan Tinggi, PAU. Pangan dan Gtzi IPB.
Barero-Arellano, D and W. Esteves. 1992. Oxidative Stobility of Potato Chips Determined by Rancimat. J. Food Sci 56 (6): 1480-1496.
Beltan, A and A. Moral. 1991. Changes in Patty Acid Composition of Fresh and Frozen Sardin (Sardina pilichidus. W). During Smoking food Chem. 42 (1): 99-109.
Daun, H. 1979. Interaction of Wood Amoke Components and Foods. Food Tech. 33 (5): 60-71. 83.
Garcia-Mesc. J. A., M.D. Luque de Castro and M. Valcarcel. 1993. Factors Affecting the Cravimelric Determination of the Oxidative Stobility of Oils. JAOCS. 70 (3): 245-247.
Girard, J.P. 1992. Smoking in Technology of Meat and Meat Products. J.P. Girard and I. Morton [Eds). Ellis Horwood Limited. New York.
Hollenbeck. C.M. 1978. Summaries of Alditional Paper on Smoke Curing. The Symposium Smoke Curing-Advances in Theory of Food Tech. Dallas. Tex. June 4-7. 1978
Ladikos, D and V. Lougovois. 1990. Lipid Oxidation in Muscle Foods. A Review. Food Chern. 35 (4). 295-314.
Pszczola, D.E. 1995. Tour Highlighys Production and Uses of Smoke-Based Flovors. Food Tech. 49 [1]: 70-74
Rahario, S.. J.N. Sofos and G.R. Schnidt. 1992. Optimalization of Sample Weight, Sample Blank and Recopery Procedures in A Thiobarbituratic Acid-Cin (TBA-Cim. Method for Measuring TBA Number in Ground Beef Proceedings Western Section, American Society of Animal Science. Colorodo Stale University Fort Coliins, 43: 317-320.
Rumahrupute.8, 2. Noor dan Supamo. 2000. Pengembangan Cakalang (Katsuwonus pelamis) Asar Daiam Bentuk "Steak" Dengan Asap Cair. Jumal Penelifian Perikanan indonesia. Val. 6 No. 1 Thn. 2000. 36-44
Steel, R.D.G and Torrie, J.H. 1981. Principles and Procedures of Statistic a Biometrical Aproach, 2nd Edition McGrow.

Lampiran

 -1

Lampiren 1. Kromotogram proflil asam lemak ikan cakalang segar
Lampiran 2 Kromatogram profif asam lernak cokalang asar dengan asap cair 40% seioma peryimpanan hail ke 0

