UII COBA PENGGUNAAN JARING INSANG CAKALANG DAN HASIL TANGKAPANNYA DI PERAIRAN MALUKU TENGAH

La Sui dan M. S. Hurasan
Peneliti BPTP Maluku

Abstract

abstrak Uii coba penggunaan jaring insang cakalang telah dilakukan dari bulan Oktober sampai dengan Desember 1998 dif peraran Maluku Tengah. Tujuan dari pengkajion ini adaiah untuk melihat produkfivitas jaring insang cakaiang terhadap spesies targetnya (tuna dan cakalang) sehingka dapat dikembangkan sebagai alat tangkap alternatit pada saat kapal cakalang sullit memperoleh ikan umpan. Data diperoleh dari hasil tangkapan pengoperasian jaring meliputi : metoda pengoperasian jaing, kamposisi hasil tangkapan, ukuran berat dan jumiahnya. Selain itu juga diamoil data-dato mengenai kapal dan jaring. Hasll penelitian menunjukkan bahwa Penebaran jaring dilokukan pada waktu sore hari dengan menggunakan tenaga dorong angin (posisi mesin dimatikan) dan diangkat pada waktu besok pagi. Hasil tangkapan yang diperoleh adalah berbagai jenis ikan permukaon (pelagis) yang berukuran besar dan didominosi oleh ikan spesies target (tuna dan cakalang) yaitu 42.6% dari total hasil tangkapan yang diperoleh. Dengan demikian jaring insang ini dapat dikembangkaan sebagai alat tangkap alternatif penggaanti di saat alat tangkap utama (huhate dan pancing lain) sulit memperoleh umpan.

Kata Kuncl : Ujicobo, Joring Insang, Cakalang.

PENDAHULUAN

Potensi testari sumberdaya perikanan laut indonesia di perkirakan mencapai 6,7 juta ton yang terdifi dari potensi perikanan wilayah sekitar 4,4 juta ton dan perairan ZEEI sekitar 2,3 juta ton per tahun (Murdjiijo, 1996). Penyebaran potensi sumberdaya hayati di laut Teritorial dan Nusantora sekitar $53,6 \%$ berada di perairan Kawasan Timur Indonesia (Maluku dan Papua): 30.9 \% ada di perairan Kalimantan dan 22.7 \% ada di perairan Sulawesi (Bustaman, 1997).

Pada wilayah perairan ZEEI, sekitar 38,3 \% berada di ZEEI Samudera Hindia: 23,4 \% of ZEEI laut Cina Selatan; dan $\mathbf{2 1 . 2 \%}$ di ZEEI Samudera Pasipik. Menurut Murdijo (1996) potensi lestari sumberdaya ikan tuna di perairan Kawasan Timur Indonesia (Maluku dan Papua) termasuk perairan ZEEI sebesar 55.800 ton/tahun. sedangkan ikan cakalang adalah sebesar 93.000 ton/tahun.

Ikan tuna dan cakalang merupakan salah satu komoditas yang memberikan kontribusi cukup finggi bagi pendapatan asli daerah (PAD) Maluku. Pengeksploitasian kedua lenis komoditaas ini dapat dilakukan dengan berbagai jenis alat tangkap. Di antara alat tangkap yang digunakan adalah huhale, rawai, pancing tonda/pancing ulur. Hal ini terlihat dari kenyataan dimana hasil tangkapan huhate, rawai dan pancing tonda/pancing ulur merupakan bagian yong terbesar dari seluruh total hasil tangkapan tuna dan cakalang yang diproduksi di perairan Maluku (BPS Maluku, 2003). Di Maluku, produksi tuna dan cukalang sampai dengan tahun 1997 baru mencapai 35,93 \% dari potensi lestari yang tersedia. Rendahnya produksi tersebut disebabkan karena terbatasnya ketersediaan ikan umpan yang mempengaruhi hari operasi/trekuensi melaut yaitu hanya 10-15 hori/bulan (Hurasan, et al 1998). Ketersediaan ikan umpan sendiri dipengaruhi oleh bebagai faktor diantaranya cuaca dan cahaya bulan. Pada periode bulan pumama, umpan hidup sangat sulit clipikat dengan cahaya buatan sehingga sulit ditangkap.

Untuk meningkatkan produksi tuna dan cakalang dengan tidak hanya mengandalkan alat tangkap huhate dan pancing lainnya yang mempunyai ketergantungan dengan ketersediaan umpan, maka perlu dicarikan alat tangkap alternatif. Tujuan dari pengkajian ini adalah untuk melihat produktivitas jaring insang cakalang terhadap spesies targetnya (tuna dan cakalang) sehingka dapat dikembangkan sebagai alat tangkap alternatif poda saat kapal cakalang sulit memperoleh ikan umpan.

BAHAN DAN METODA

Bahan yang digunakan dalam pengkajian ini adaiah jaring insang cakalang dan kapal huhate (pole and line). Kegiatan dilakukan dalam bentuk uil coba penangkapan bersama dengan nelayan di teluk Elpaputi sekitar Rutah. Tamiloow dan Nusa Laut (Maluku Tengah) dari bulan Oktober sampai dengan Desember 1998. Data dikumpulkan dari hasil uii coba penangkapan meliputi : metoda pengoperasian jaring, komposisi hasil tangkapan dan jumlahnya. Dari data hasil tangkapan dapat dianalisis produktivitas jaring yaitu dengan menghitung hasil tangkapan per hauling $(\mathrm{C} / \mathrm{H})$ dan efektivifas dengan menghitung persentase hasil tangkapan spesies target dari total hasil tangkapan yang diperoleh.

HASIL DAN PEMBAHASAN

1. Sarana Penangkapan

a. Kapal

Kapal merupakan salah satu sarana terpenting dalam usaha penangkapan ikan. Oleh karena itu berhasil tidaknya usaha penangkapan, kapal harus memenuhi beberapa persyaratan yang berkaitan dengan desain, kontruksi propulsinya yang sesuai dengân alat tangkap ikan yang akan dioperasikan dengan kapal tersebut (Anung. 1993).

Kapal yang digunakan dalam pengkajian ini adalah kapal huhate, bahan dari kayu dilapisi fiberglass (panjang 15,41 meter, lebar 3,35 meter, tinggi 1,70 meter). Menurut Tupamahu dan Talahatu (1998) bahwa dari beberapa ukuran kapal yang dikajl untuk mengoperasikan jaring insang hanyut, kapal dengan ukuran panjang 14,0 meter, lebar 3,0 meter dan tinggi 1,3 meter lebih efisien secara teknis maupun ekonomis dari pada ukuran lainnya yang beroperasi di perairan pulou-pulau Aru. Tonage kapal yang digunakan dalam pengkajian ini adalah 29 GT, dengan tenaga penggerak merk Yanmar (75 HP). Menurut Bustaman dan Hurasan (1997) batwa kapal huhate biasanya memiliki berbagai ukuran mulai dari 3 GT sampai dengan 30 GT dan pendapatan kotor terbaik adalah kapal dengan tonage 30 GT . Syarat lain dari kapal ikan terutama kapal cakalang adalah harus memiliki daya gerak yang cepat untuk memburu gerombolan ikan sampai jauh dari pelabuhan basis (fishing base). Busiaman dan Hurasan (1997) menyatakan bahwa diperhatikan untuk menuju fishing ground dimana dengan kecepatan tertentu saling berebut untuk mendapatkan gerombolan ikan (schooling). Tipe, ukuran dan daya geraknya sangat menentukan keberhasllan operasi penaangkapan (ilyas, 1984 dan 1993; Merrit, 1969). Teknologi penangkapan dan kapal ikan harus dikembangkan bersama-sama teknologi alat tangkap, sedangkan pengkajan dan penerapannya harus didasarkan pada pengetahuan yang berkaitan dengan sumberdaya laut; metoda, jenis kapal dan alaf tangkap (lyyas dan Sitepu, 1995).

b. Alat Tangkap

Unit penangkapan ikan secara umum merupakan suatu kesatuan teknis yang terdiri dari kapal dan perlengkapannya, alat tangkap serta perlengkapan loinnya yang dibutuhkan sesuai dengan sistem pengoperasian alat tangkop dimaaksud untuk menangkap jenisjenis lkan tertents (ikan spesies farget) (Tupamahu dan Talahatu, 1998). Dalam pengkajian ini ikan spesies target adalah funa dan cakalang.

Alat tangkap yang digunakan dalam ufi coba ini adalah jaring insang cakalang. Jaring insang ini sama dengan jaring insang pada umumnya yaitu bentuk empat persegi panjang, memiliki ukuran mata sama pada seluruh tubuh jaring, dilengkapi derigan tali is atas den tali ris bawah serta pelampung dan pemberat (Mahiswara et al, 1989). Jaring insang cakalang ini terbuat dari bahan nilon benarig ganda (multi filament) PA $210 \mathrm{~d} / 21$ berukuran mota (mesh size) 5.0 inci . Jaring insang cakalang tersebut terdiri danf 15 pis (pice) dengan total panjang 900 meter dan dalam 28.5 meter. Jaring insang ini terdiri dari beberapa komponen yaitu tali pelampung. tali ris (tali ris atas dan bawah), pelampung (pelamung utama dan pelampung bantu), bahan jaring (webing), pemberat (pemberat utama dan pemberat bantu), lampu tando dan bendera serta tali stambar. Nilai pengerutannya (shortening) adalah 30,25\%.

Pelampung utama adalah pelampung berbentuk kapsul, bahan darl sintetik Ruber (SR) tipe 803 A dan pelampung bantu adalah pelampung berbentuk bola yang bahannya dari plastik. Sedangkan pemberal utamo adalah terbuat dari timah dan pemberat bantu adalah terbuat dari semen cor. Ayodhyoa (1980) menyatakan bohwa pada bagian atas dari jaring dipasangkan pelampung. sedangkan di bagian bawahnya dipasangkan pemberat. Dengan perimbangan dua gaya yang berlawanan antara pelampung dan pemberat serta berat jaring itu sendiri, maka jaring akan terbentong dalam air.

2. Metoda Pengopercasian

Jaring insang cakalang adalah alat tangkap yang bersifat pasif sehingga faktor alam (arus, angin), pengalaman dan pengetahuan nelayan sangat menentukan keberhasilan pengoperasiannya. Susanto, et al, (1987) menyatakan bahwa dalam menelaah suatu usaha penangkapan ikan terdapat beberapa faktor yang saling berkaitan yaitu foktor manusia, alat tangkap dan kapal serta alat bantu lainnya. Dalam menentukan posisi penebaran jaring harus dilakukan dengan cermat dan perhitungan yang mantap agar posisi kapal selalu di bawah angin. Adapun urutan kegiatan pengoperasian jaring insang cakalang
adalah : persiopan, penebaran jaring (setting), perendaman jaring (membiarkan jaring terpasang di laut) dan pengangkatan (haulifing).

Sobelum penebaran jaring dilakukan, terlebih dahulu dilakukan pengaturan jaring dan perlengkapan kainnya sehingga pada saat setting dapat berlangsung dengan lancar dan jaring ai dalam air dapat terbentang dengan sempurna. Kemudian memperhifungkan arah angin dan arus. Hal ini sangat penting agar kito dapat memperhitungkan di sisi dek sebelah mana jaring akan diangkat.

Dalam kegiatan penebaran jaring insang cakalang, yang pertama diturunkan adalah pelampung bendera yang dilengkapi dengan lampu tanda dan diikuti dengan penurunan janing. Pice demi pice diturunkan hingga pada pice yang terakhir dan selanjutnya ujung tall slambar diikal pada kapal. Waktu yang diperlukan untuk penebaran jaring berkisar $\%$ jam sampai dengan 2 jam, tergantung dari situasi dan kondisi laut pada saat penebaran. Penebaran jaring insang cakalang dilikukan dengan memanfaatkan tenaga dorong angin. Dengan memanfaatkan tenaga dorong angin ini, mesin kapal harus dalam keadaan mati sehingga kapal hanyut terbawa angin secara perlahan. Pada saat hanyut tersebut, jaring diturunkan pice demi pice hingga terakhir pengikatan tali slambar pada kapal. Kecepatan penebaran jaring sangat tergantung dari kecepatan angin. Makin kuat tenaga dorong angin, makin pendek waktu yong dipertukan untuk penebaran.

Perendaman jaring adalah membiarkan jaring terposang sampai dengan saat pengangkatannya (haulling). Waktu yang diperlukan untuk perendaman jaring adalah berkisar 8 - 10 jam. Pengoperasian jaring insang cakalang biasa dilakukan pada malam hari. Menurut Tupamahu dan Talahatu (1998) bahwa maksud dari pengoperasian jaring insang hanyut pada malam hari karena dihubungkan dengan terlihatnya jaring oieh ikan.

Penarikan jaring diliakukan pada waktu pagi hari. Dalam kegiatan ini yang pentama diangkat adalah pice jaring yang paling dekat dengan kapal, selanjutnya diikuti pice-pice jaring berikutnya hingga pice yang paling ujung yaitu ujung tali slambar yang berbendera dan berlampu tanda. Poda saat penarikan jaring berlangsung, ikan yang tertangkap dilepas satu per satu dan ditempatkan di atas dek kapal ditimbang beratnya, dibersihkan dan dimasukan ke dalam palka ikan. Sambil ditarik, jaring sambil diatur agar siap untuk ditebar pada operasi berikutnya.

3. Hasil Tangkapan dan Produkifivitas

Jenis-jenis ikan yang tertangkap dengan jaring insang cakalang selama ufil coba adalah sebanyak 9 jenis yaitu: cakalang (Katsuwonus pelamis), tuna (Thunnus albacores), komo (Auxis thazard), bubara/kuwe (Caranx sp), setuhuk putih (Tetrapturus mazara), setuhuk hitom (Makaira indica). koluyu/cucut (Carcharrinidae), pari burung (Aetomylus ninchofii) dan kakop hitam (Lufjanus sp) (Lampiran 1). Jenis yang merupakan spesies target dari penggunaan jaring insang cakalang adalah ikan tuna dan cakaiang. Hal ini sesuai dengan yang dikatakan oleh Nasution (1993) bahwa disebut jaring insang tuna dan cakalang karena ikan sasaran tangkapan utama adalah cakalang (Katsuwonus pelamis) disamping tuna (Inunnus albacores). Lebih lanjut Nasution menyatakan bahwa selain cakalang dan tuna, banyak juga tertangkap ikan pelagis besar yang bersamaan dengan kawanan cakalang seperti ikan layaran |lstrophorus platypterus), jangilus (Makaira indica), balaragas (Xiphias gladius), cucut (Carcharinidae), lemadang (Coryphaena hyppurus) dan lain-lain. Total hasil tangkapan yang diperoleh selama uif coba penangkapan (42 kali operasi) adalah sebanyak $3.246,7 \mathrm{~kg}$ yang didominasi oleh jenis tuna dan cakalang masing-rilasing $681,4 \mathrm{~kg}(21,4 \%)$ dan $690,1 \mathrm{~kg}(21,3 \%)$. Produktivitas jaring insang cakaiang (C/H) untuk semua jenis hasil tangkapan adalah $77,3 \mathrm{~kg} / \mathrm{haulling}$, sedangkan untuk jenis tuna dan cakalang adalah $32,9 \mathrm{~kg} / \mathrm{haulling}$.

KESIMPULAN

Hasil tangkapan spesies target (funa-cakalang) mencapai 42.6% dari total hasil tangkapan sehingga jaring ini dapat dikembangkan sebagai alat tangkap alternatif pengganti di saat alat tangkap utama (huhate dan pancing lain) sulit momperoleh umpan.
2. Jaring insang cakalang dapat menangkap berbagai jenis ikan permukoan yang berukuran besar.

Seminar Nasionai Inowasi Toiknologi Pertanion Berwawason Agribisnis Mendukung Pembangunan Pertanion Wilyyah Kepulouan (Ambon, 22-23 Nov '05i

DAFTAR PUSTAKA

Anung. P. Agustinus, 1993. Pembuatan kapal penaangkap ikan dari kayu oleh gelangan tradisional di Labuan-Jawa Barat. Jumal Penelitian Perikanan Laut, No. 81 : $54-63$.
Ayodhyoa, A. U. 1980. Metoda Penangkapan lkan. Yayasan Dewi Sri, Bogar, 97 hal.
BPS Maluku, 2003. Moluku Dalam Angka, 604 hal.
Bustaman, S. dan M.S. Hurasan, 1997. Perspektit Pengembangan Teknolog Penangkapan dan kapal ikan di Maluiku. Prosioing Agribisnis Dinamika Sumberdayo dan Pengembangan Sistern Usaha Pertarian. Pusot Penelifian Sosial Ekonomi Pertanian, Bogor. Badan Litbang Pertanian, Jaakarta.
Bustaman, S., 1997. Potensi dan Prospek Perikanan Laut di Perairan Maluku dan Irian Jaya. Makalah disampaikan poda Sernirar Regionaal Kaawasan Timur Indonesla (KTI) di Nalbonat-Kupang, NTI $28-30$ Jull 1997.
Hurasan M.S: S. Bustaaman; Wijopriono dan S. Hoarwanti, 1998. Teknologi Kapal Cakalang Multi Gear (huhate, gill net, long line) di Maaluku. Laporoan Hasil Pengkajian Tahun Anggaran 1997/1998. BPIP Ambon, 35 hal.
Illyas, S., 1984. Teknologi Retrigaasi Hasil Perikanan, Jiiid I Teknik Pendinginan likan. CV. Paripurna, Jakarta,
Illyas, S., 1993. Teknologi Refrigasi Hasi Perikanan, Jilid II Teknik Pendinginan lkan. Badan Penelitian dan Pengembangan Pertanian Bekerja sama dengan USAID Fishing Research and Development Projek, Jakarta.
lliyas. S. dan M.J. Sitepu, 1995. Pertunya Lembaga Teknologi Penangkapan dan Kapal lkan pada Industri dan Jasa Kelautan. Makalah cisampaikan pada Seminar Kelautan Nasional 1995. Pengembangan Riset dan Teknologi Kelautan serta Industri Martim. Jakarta 15-16 Nopember 1995.
Maahiswara, Wudianto dan Wijapriono. 1989. Pengaruh Ukuran Mata Jaring terhcdap Hasil Tangkapan. Jumal Penelfian Perikanan Laut, No. 51 : 59-66.
Mentit. J.H.. 1969. Refrigration on Fishing Vessels, Fishing News (Books) Ltd. London.
Murdjijo. F. X., 1996. Kebijakan Pemaanfoatan Sumberdaya Perikanan Laut Indonesic, Ditien Perikanan. Makalah disampaikan pada Lokakarya Pengembangan Perikanan Daerah Maluku. Ambon. 7-8 Oktober 1996.
Nosution, CH.. 1993. Anaalisis Koefisien Pengikaton Jaring Insang Tuna di Pelabuhan Ratu - Jawa Barat. Jumal Penellian Perikanan Laut, No. 82:11-26.
Susanto, K; Wijopriono dan A. A. widodo, 1987. Hubungan antara Pukat Cincin panjang pukat cincin dengan paarameter Lain di daerah Prigi - Jowa Timur. Jumal Penelifian Perikanan Laut, No. $39: 61$ - 71.
Tupamahu. A. Dan W. Talahatu, 1998. Alat tangkap untuk Menangkap lkan Pelagis Besar yang Telah dan Akan Digunakan di Perairan Nialuku. Makaiah Disampaikan poda Ponduan Pertemuan Aplikasl Paket Teknologi Pertanion di BPIP Ambon.

C＇91		$62!1$				719	\％ 589	41	86	L	て＇guz	ε	$8 \varepsilon \%$	5	25	02	19001	902	r＇169	8711059	861	417
							－															
	$0 \mathrm{Ev2}$	96			Stil	$\stackrel{\rightharpoonup}{*}$	\checkmark		－		－			－		－	－	－	－	92	§	27
92.	5	$\stackrel{+}{*}$	－	＊	－	－	－	＊	－		－	－	－	－		89	8	－		－cs	2	If
9 Lt	51	－	－	－	－	－	－	－	－		－	－	－	－		6	．	5＇s	1	0＇1\％	9	68
$3{ }^{3} 6$	2	－	－	－	－	－	－	．	－		－	－	－			－	－	81	i	て＇z	1	${ }_{0} 8$
O＇ts	ε	＊	－	c＇OS	1	\checkmark	1	－	$\stackrel{+}{4}$		－	－	－	－		＊	－	．	－	－	－	2ε
OOCL	9	－	－	－	－	OS	－	－	－		－	－		－		＊	＊	－	－	－	－	98
	－	－	－	－	－	\checkmark	1	－	－		－	－	－	－		＊	－	001	1	－	－	SE
O＇Or	2	－	－	－	－	008	－	－	－		－	－	－	－		－	－	0001	1	8.21	9	－ 8
908	01	0%	ε	－	－	－	－	011	1		－		－	－		－	－	．	－	$1^{\prime}+2$	l	c¢
I＇tSI	8	＊	－	＊	－	－	－	－	－		－	－	－	－		＊	＊	－	－	S＇OL	41	zE
S＇0L	$\angle 1$	－	－	－	－	－	－	－	＊		－	－	$B^{\prime} \angle 1$	9		－	＊	I＇L1	z	C＇II	s	18
S＇SZ	l	＊	－	＊	－	－	－	＊	＊		－	－	－			－	＊	$8^{\prime} \angle 2$	5	9 9＇12	6	OE
1＇S11	εZ	－	－	C＇IE	τ	－	－	て＇¢	1		－	－	－	－		－	＊	E＇10\％	001	$9^{\prime} 66$	て¢	62
1＇595	7 Et	－	－	C＇İ	1	－	－	－	－		＊	－	－	－		＊	－	$\mathrm{g}^{\prime} \mathrm{Er}$	τ	F＇ir	Zt	82
$9^{\prime \prime} 281$	51	－	－	－25	I	＊	τ	－	－		－	－	S＇11	§		－	－	0 ＇28	z	9.891	St	$\angle 2$
8932	91	－	－	，	－	872	－	－	＊		＊	－	－	－		\bigcirc	－	P＇v2	9	です！	\dagger	92
でて	2	E＇1	1	$\varepsilon ' 乙 1$	1	－	－	O＇SL	1		＊	－		1		O＇L	1	．		E＇I	1	92
でロリ	t	$\angle 8$	τ	C＇Oz	1	＊	－	－	－		－	－	－	－		－	－	－	－	\％	－	72
	．	，	－		－	－	τ	－	－		－	－	SO	1		89	¢8I	－	－	－	－	£Z
EcL	8 Cl	－	－	－	－	09	－	－	－		＊	－		＊				－	－	＊	－	cz
C＇Z	z	－	＊	－	－		1	－	－		－	－	て＇8	ε		60	8	－	－	S＇S	τ	12
7×1	71	－	＊	－	－	02	－	－	－		－	－	－	－		－	－	－	－	－		02
	．	－	－	－	－	－	－	－	－		－	－	－	－		C^{\prime}	S	－	－	$0^{\prime} \varepsilon$	1	61
こ＇	9	－	－	－	－	＊	－	－	－		89	1	－	－		92	OE	－	－		＊	81
で89	re	$\angle 2$	ε	－	－	－	－	－	－		－	－	－	－		61	11	－	＊	－	－	41
96	11		－	－	－	－	－	＊	－		－	－	－	－		0 oz	261	－	－	－	－	91
1＇6et	941	18	2	0\％12	2	－	－	－	－		－		－	－		60		－	－	－	－	SI
$6^{\circ} 0$	2	，	－	－	\cdot	－	－	－	－		－	－	－	－		－	－	－	－	$O^{\prime} \varepsilon$	t	$r 1$
O＇E	1	－	－	－	－	－	－	－	－		－	－	＊	－		－	＊		－	－	－	$\varepsilon 1$
0 OU1	1	－	－	0＇Z11	1	－	－	－	－		－	－	－	－		$8{ }^{\prime} 0$	21	－	－	－	－	21
$\mathrm{B}^{\prime} \mathrm{O}$	21	－	－	－	－	－	－	＊	－		－	$-$	－	－		－	－	－	－	－	－	11
－	，	－	－	－	＊	－	－	－	－		－	－	－	－		z^{\prime}	6	－	－	－	－	01
て＇Z	01	01	1	－	－	－	－	－	－		－	－	－	－		I＇z	ャ2	＊	－	－	＊	
1＇2	12	，	－	－	－	－	－	－	＊		$8 \% 1$	z	－	－		－	$\stackrel{+}{0}$	－	－	82	1	8
$\mathrm{S}^{\prime} 8 \mathrm{l}$	ε	－	－	－	－	－	－	－	－		－	－	－	－		51	01	－	－	－	－	
$5 \cdot 1$	01	－	－	．	－	－	－	－	－		－	－	－	－		5	2£	－	－	＊	－	9
38	DE	¢ $¢$	2	＊	－	－	－	－	－		－	2	－	－		55	1ε	$0{ }^{\prime} 12$	ε	0%	τ	S
$\mathrm{S}^{\prime} 1 / 2$	\＆	0%	z	－	－	－	－	－	－		O＇EE	τ	－	－		0 O＇	7ε	S＇81	1	0 Ol	＊	$\stackrel{\square}{ }$
$\mathrm{S}^{\prime} 69$	17	．	－	＊	＊	＊	＊	－	－		－	－	－	，		S＇1	$0 /$	\cdots	－	\bigcirc	－	ε
O＇OS	06	－	－	－	－	＊	－	－	－		－	－	0 O1	\rangle		5 SI	SL	S＇OZ	1	001	ε	τ
0911	F	＊	＊	O＇8S	1	＊	＊	－	－		－	－	－	－		09	てE	－	－	čull	98	1
BX	10×3	EX	10x3	By	10×9	DX	1090	Bx	10×1		Dत्र	1097	$B \times$	1093		6］	10才13	6x	2093	BX	10×3	
yoquen			doyox			Inon）		W0\％H		ynunies			yeqnd			xnuntes		$\begin{array}{r} \text { DJoqre } \\ \text { owicx } \end{array}$		$\begin{array}{r} \text { ouñ } \\ \text { Bucjoyos } \end{array}$		ON
UOCDत्रहUDIIISDH S］uer																						

