KARAKTERISTIK CURAH HUJAN DI MALUKU

H. Rahalus, F. Latuny, dan F. A. Pattinama
Forecaster Stasiun Mefeorologi Patfimura Ambon
Badan Mefeorologi dan Geofisika

PENDAHULUAN

Wilayah Indonesia berada di antara dua benua dan dua samudera, dan membentang disepanjang daerah katulistiwa. Berdasarkan kondisi tersebut, secara klimatologis, pola iklim di indonesia memiliki tiga tipe iklim, yaitu tipe Equatorial, tipe Monsun dan tipe Lokal. Ikilm merupakan keadaan yang mencirikan atmosfer pada suatu daerah dalam jangka waktu yang cukup lama.

Tipe ikim Equatorial memiliki banyak hujan sepanjang tahun dan memiliki dua puncak maksimum, biasanya pada bulan Maret dan Oktober. Tipe ikim Monsun biasanya musim hujan berlangsung selam 6 bulan, dan 6 bulan berikutnya musim kemarau. Sedangkan tipe ikim Lokal merupakan kebalikan dari tipe ikim Monsun.

Awal musim hujan/kemarau tidaklah selalu sama untuk semua wiayah. Demikian pula panjang musimnya, seperti harrya di wilayah Maluku. Berdasarkan data yang ada menunjukkan bahwa periode musim di beberapa tempat di Maluku agak berbeda dengan wilayah lain di indonesia, bahkan sebagian daerah mempunyai periode yang berlawanan. Misainya beberapa daerah lain di indonesia sedang mengalami musim hujan, sementara ada beberapa daerah di Maluku sedang berlangsung musim kemarau, dan sebaliknya.

Namun dari data menunjukkan adanya tahun-tahun tertentu dimana terjadi perbedaan jumlah curah hujan yang mencolok. Hal ini menuniukkan pula bahwa masih ada faktor lain yang ikut berinteraksi mempengaruhi musim; antara lain fenomenc alam global seperti gejala 1 N Nino dan La Nina.

tinjauan teori

Pada dasarnya pembentukan cuaca dan ikiim di Indonesia difinjau dari proses fisis dan ainamika atmosfer sangat dipengaruhi oleh beberapa hal diantaranya gerak deklinasi matahari sepanjang tahun (sistem equatorial). Manakala matahari berada di Belahan Bumi Selatan (B8S) akan menerima energi surya maksimum sehingga udara relatif panas dan mengakibatkan tekanan udara rendah, bila proses fisis dan dinamis terpenuhi maka akan muncu' banyak awan dan kemudian hujan. Demikian sebaliknya bila matahari beroda di Belahon Bumi Utara (BBU).

Dari bebrapa unsur cuaca, yang berpengaruh terhadap bidang pertanian adalah curah hujan. Untuk dapat memanfaatkan sumberdaya tersebut sebaiknya pertu mempelajari sifat-sifat hujan, baik yang bersifat normal maupun ekstrem.

Sifat hujan merupakan perbandingan antora jumlah curah hujan selama rentang waktu yang ditetapkan (satu periode musim kemarau) dengan jumlah curah hujan normainya (rata-ata selama 30 tahun). Sifat hujan dikategorikan atas :

- Di Atas Normal (AN) : Jika nila curah hujan $>115 \%$ terhadap rata-ratanya.
- Normal (N) : Jika nila curah hujan antara $85 \%-115$ \% terhadap rata-ratanya.
- Di Bowah Normal (BN) : Jika nila curah hujan <85 \% terhodap rata-ratanya.
sifat hujan prakiraan musim di suatu daerah diprakiraan normal, tidak berarti bahwa setiap bulan di musim tersebut intensitas curah hujannya akan terus menerus normal. Akan tetapi secara akumulasi curah hujan selama periode hujan tersebut adalah normal. Terkecuali ika adanya gejala fenomena alam global, yang dapat mengakibatkan sifat hujan di bowah normal dan sebaliknya di atas normal pada periode musim hujan.

Oleh BMG, penentuan permulaan musim terbagi dua, yaitu :

1. Permulaan Musim Kemarau : ditetapkan berdasarkan jumlah curah hujan dalam satu dasarian $<50 \mathrm{~mm}$ dan dilikuti oleh beberapa dasarian berikutnya.
2. Permulaan Musim Hujan : ditetapkan berdasarkan jumlah curah hujan dalam satu dasarian $\geq 50 \mathrm{~mm}$ dan dilikuti olen beberapa dasarian berikutnya.

Permulaan musim kemarau dan permulaan musim hujan bisa terjadi lebih awal (maju), sama atau lebih lambat (mundur) dari normalnya.

Dasarian adalah rentang waktu selama 10 (sepuluh) hari, dalam satu bulan dibagi menjadi a (tiga) dasarian, yaitu :
a. Dasarian 1 : Tanggal 1 sampai dengan 10
b. Dasarian II : Tanggal 11 sampai dengan 20
C. Dasarian III : Tanggal 21 sampai akhir bulan.

Penentuan Daerah Prakiraan Musim (DPM) oleh BMG terbagi dua, yaitu :
a. DPM : Daerah yang pola hujan rata-ratanya memiliki perbedaan yang jelas antara periode musim kemarau dan musim hujan.
b. Non DPM : Daerah-daerah yang pola hujan rata-ratanya tidak memiliki perbedaan yang jelas antara periode musim kemarau dan musim hujun.
Di wilayah Maluku dan Maiuku Utara memliki 8 (delapan) daerah prakiraan musim, yaitu :

1. Halmahera Tengah, Maluku Utara bagian Timur dan Utara
2. Maluku Utara bogian Barat
3. Maluku Tengah bagian Barat Laut
4. Maluku Tengah bagian Utara
5. Maluku Tengah bagian Timur
6. Maluku Tenggara bagian Utara dan Timur
7. Maluku Tenggara bagian Tengah
8. Maluku Tenggara bagian Barat

Akhir-akhir ini pemantauan cuaca dalam skala global juga memperhatikan kondisi muka laut dan tekanan udara diatasnya. Disamping ltu, juga masih memperhitungkan pengaruh kondisi lokal sepertl topografi/gunung, garis pantai dan posisi (lintang dan bujur). Skala global ini blasanya dikenal dengan fenomena alam yang disebut "El Nino dan La Nina".

Dalam pengertian meteorologi, El Nino dipandang sebagai fenomena lautan-atmosfer dalam $\$ \mathrm{k}$ ala global, pengaruhnya sampai ribuan kilometer. El Nino sebenarnya digunakan oleh Nelayan Perv pada abad 19 untuk menandai air hangat yang muncul di separiang pantai Amerika Selatan. Beberapa waktu kemudian El Nino dikenal sebagai penyimpangan lkim pada skala yang besar, yang muncul bersamoan dengan naiknya suhu muka laut di Pasifik Timur dan Tongah lebih panas daripada normalnya. Sernentara itu, suhu muka lout di perairan Indonesia berada di bawah normal. Tahun-tahun terjadinya El Nino:1918, 1940, 1957, 1965. 1972, 1976, 1986, 1992, 1997, 2002. Pengaruh El Nino berdampak menurunnya intensitas curah hujon atau dapat dikatokan terjadinya kekeringan. Sedangkan La Nina merupakan kebalikan ciari peristiwa El Nino. Indikator yang dapat digunakan untuk dapat mengetahul episode El Nino dan La Nina adalah:
a. Indeks Osilasi Selatan (IOS)
b. Suhu Muka Laut di Lautan Pasifik
c. Pola Angin Timur Barat: Pengaruh Angin Pasat Intensitas E Nino dapat dikategorikan atas :
a. El Nino Lemah (Weak El Nino) : Jika anomall suhu muka laut di Paslif Equator $+0,5^{\circ} \mathrm{C} / \mathrm{d} 1,0^{\circ} \mathrm{C}$ yang berlangsung selama 3 (tiga) bulan berturut-turut atau lebih.
b. El Nino Sedang (Moderate El Nino): Jika anomali suhu muka laut di Pasifik Equator $+1,1^{\circ} \mathrm{C} 5 / \mathrm{d} 1,5^{\circ} \mathrm{C}$.
c. El Nino Kuat (Strong El Nino) : Jika anomali suhu muka laut di Pasifik Equator $+>1.5^{\circ} \mathrm{C}$ yang beriangsung selama 3 (tiga) bulan berturut-turut atou lebih.

ANALISIS DATA

Data yang dlgunakan adalah data rata-rata bulanan curah hujan dari beberapa stasiun Meteorologi di Maluku. Dari data-data tersebut menunjukkan bahwa pola musim di beberapa tempat di wilayah Maluku sangat beragam. yang secara umum banyak dipengaruhi oleh fenomena lokal, seperti tampak pada Tabel 1.

Tabel 1. Rata-rata periode musim di Maluku

No.	Dagrah	Musim Hujan		Musim Kemorau	
		Rata-rata Peride Musim	Rata-rata Jilh Curah Hujan (mm)	Rata-rata Peride Musim	Rata-rata Jth Curah Hujan (mm)
1	AMBON	APR - SEP	2.018	OKT - MAR	616
2	AMAHAI	APR - SEP	1.685	OKT-MAR	665
3	KAIRATU	MEI - SEP	1.042	OKT - APR	812
4	NAMLEA	DES - MAR	856	APR - NOP	552
5	GESER	DES - JUL	1.434	AGS - NOP	385
6	BANDA	DES - JUN	1.535	JUN - NOP	503
7	TUAL	DES - JUN	2.090	JUN - NOP	424
8	SAUMLAKI	DES - MEI	1.389	JUN - NOP	275

Namun pada tahun 1997. dimana merupakan tahun El Nino dengan intensitas yang kuat, curah hujan di Maluku berada di bawah normal. Hampir semua wilayah di Maluku mengalami bencana kekeringan yang sangat berpengaruh di berbagai sektor, yaitu di sektor penerbangan pertanian. pelayaran, dan kesehatan.

Perbandingan data curah hujan untuk daerah Ambon tahun 1997 dengan normalnya dapat dilihat pada Tabel 2. Histogram curah hujan bulanan dari beberapa stasiun meteorologi di Maluku disajkan pada Lampiran 1.

Tabel 2. Data curah hujan Stasiun Meteorologl Pattimura Ambon Tahun 1997 dengan normalnya

No	BUlan	Curah Hujan Normal (mm)	Curah Hujan Tahun 1997 (mm)
1	JENUARI	125	39
2	PEBRUARI	101	41
3	MAREI	136	44
4	APRIL	166	37
5	MEI	356	25
6	JUNI	508	32
7	JULI	451	97
8	AGUSTUS	360	2
9	SEPTEMBER	177	100
10	OKTOBER	94	6
11	NOVEMBER	46	14
12	DESEMBER	112	35

Dari data di atas, menunjukkan bahwo curah hujan tahun 1997 di daerah Ambon berado di bawah normal. Hal ini dapat dilihat pada periode musim hujan, rata-rata jurnlah curah hujan sebesar 2.018 mm . Namun pada periode musim kemarau tahun 1997, rata-rata jumiah curah hujannya sebesar 616 mm . Dampak yang sangat dirasakan di bidang pertanian yaitu terjadinya kekeringan sehingga mengakibatkan gagal panen. Hal ini membowa kerugian yang cukup besar bukan saja di bidang pertanian, tetapi juga di bidang penerbangan, pelayaran, dan kesehatan.

KESIMPULAN

- Pola musim di beberapa tempat dl Maluku sangat beragam. Secara umum, iklim di Maluku termasuk dalam tipe Monsun, namun ada beberapa daerah yang termasuk dalam tipe Lokal. Salah satu faktor utama yang mempengaruhi hal tersebut acialah pengaruh topografi/gunung dan efek teluk. Misalnya: Ambon, Kairatu dan Amahai.
- Fenomena alam global El Nino turut berpengaruh dalam pembentukan pola musim di Maluku. Tahun 1997 merupakan tahun El Nino terkuat, climana curah hujan al beberapa tempot di wilayah Maluku berada di bawah normal, sehingga terjadi kekeringan.
- Pengaruh dari fenomena alam El Nino membawa kerugian yang sangat besar di berbagai bidang, seperti di penerbangan, pertanian, pelayaran, dan kesehatan.

DAFTAR PUSTAKA

Badan Meteorologi dan Geofisika. Prakiraan Musim Hujan di Indonesia. Buletin Meteorologi dan Geofisika Data Curah Hujan Form F. Klim 71.

Lampiran 1. Histogram Curah Hujan Bulanan dari Beberapa Stasiun Meteorologi di Maluku

(a) Stamet Ambon

(c) Stamet Karatu

(e) Stamet Geser

(g) Stamet Tual

(b) Stamet Amahai

(d) Stamet Namlea

(f) Stamet Banda

(h) Stamet Saumlaki

