EFEK PEMBERIAN SABUN KALSIUM TERHADAP PENAMPILAN PERTUMBUHAN TERNAK DOMBA

G. Joseph', A. Parakkosi, T.R. Muchtadi dan R. Priyanto ${ }^{2}$
'Mahasiswa Sekolah Pascasarjana IPB Bogor cton 2staf Pengajar Sekolah Pascasarjana IPB, Bogor

Abstract

ABSTRAK Suatu penelitian telah dilakukan untuk mempelajari efek pemberian sabun kalsium (Ca Soap) terhadap penampilan pertumbuhan ternak ruminansia. Penelifian ini cilakukan dalarn dua tahap. Tahop pertama secara in vitro, bertujuan untuk mengetohul efektifitas sabun kalsium mefridungi asam lemak poli tak-jenuh dari biohidrogenasi mikroorganisme calam rumen, dengan menggunakan dua sumber asam lemak poli fak-jenuh yaitu minyak ikan lemuru dan minyak kelapa sawit kasar (CPO) sebagai bahan dasar pembuatan sabun kaisium. Parameler yang diamati ialah : Bilangan lod, Bilangan Penyabunan, Rendemen dan Kandungan asam lemak. Hasil penelitian menunjukkan bahwa minyak ikan lemuru merupakan sumber asam lemak yang baik dan sabun kalium dapat melindungi asam lemak poli takjenuh dari biohidrogenasi mikroarganisme rumen. Penelitian tahap kedua (in-vivol, dengan menggunakan is ekor temak Domba Lokal dan 3 jenis ransum dengan pemberian sabun kalsium $0 \%, 5 \%$ dan 10% masing-masing untuk RA, RB dan RC sebagai perlakuon. Parameter yang diamati adaloh: Konsumsi Pakan. Kecemaan Pakan dan Pertambahan Berat Badan. Hasil penelitian menunjukkan bahwa pertakuan RB dan RC memberikan penampilan pertumbuhan yang lebih baik.

Kata Kunci : Sabun kaisium, ternak domba.

pendahuluan

Latar Belakang

Dalam rangka meningkatkan produktivitas ternak, terutama ternak ruminansia, berbagai upaya telah dilakukan antara lain adalah upaya aplikasi teknologi pemanfaatan sabun kalsium daiam ransum temak ruminansia. Penggunaan sabun kalsium dalam ransum ini diharopkan dapat mempercepat pertumbhan temak, memperbaiki efisiensi penggunaan ransum dan meningkatkan kualitas daging temok tersebut.

Daging terutama dari temak ruminansia, susunan asam lemaknya telah menyimpang dari beberapa rekomendasi yang sudah ada yang biasanya mengandung terlampau banyak asam lemak jenuh atau sebaliknya terlampau sedikit asam lemak poli-tak-jenuh (Parakkasi, 1995). Hal ini disebabkan karena pada ternak ruminansia, asam lemak poli tak-jenuh yang masuk ke rumen akan mengolami biohidrogenasi oleh mikro organisme rumen. Jadi asam lemak yang masuk ke usus halus mengandung proporsi yang tinggi dari asam lemak bebas jenuh dan sedikit monogliserida (Lloyd. et al., 1978).

Asam lemak poli tak-jenuh (Poli-Unsaturated Fatty Acid. PUFA) merupakan asam lemak yang sangat penfing karena termasuk asam lemak esensial. Laporan penelitian dari Amerika, Canada, Australia, Jepang. Norwegia, inggris dan negara-negara lain menunjukkan bahwa asam lemak omega-3 mempunyai peranan yang sangat penting untuk kesehatan manusia karena membantu pencegahan diabetes menurunkan kadar kolesteral, mencegah pengerasan pada pembuluh arteri dan penyakit jantung (Soowardi, 2005).

Minyak kelapa sawit kasar (Crude Palm Oil, CPO) dan minyak ikan merupakan hasil samping dari industri minyak goreng dan industri pengalengan ikan. Kandungan asam lemak pol-tak jenuhnya masih cukup tinggi schingga dapat dipakai sebagai bahan pakan temak khususnya bahan pakan alternatif untuk mencukupi kebutuhan nutrisi yang befungsi sebagai sumber energi

Tingginya kandungan lemak dalam minyak ikan lemuru dan CPO perlu dipertimbangkan mengingat sistem pencernaan pada temak ruminansia yang sangat peka terhadap kandungan lemak yang tinggi dalam pakannya. Demikian juga mikro-organisme rumen yang dapat menghidrolisis asam lemak poli-tak-jenun menjadl asam lemak jenuh

Proses perlindungan asam lemak selama ini yang sudah dilakukan adalah dengan menggunakan formaldohid, mikıenkapsulasi dan sabun kalsium (Ca-Soap). Sabun kalsium merupakan bentuk lemak terlindung dan merupakan sumber lemak yang efektif dalam bahan pakan ternak ruminansia, karena sistem fermentasi rumen tetop normal, kecmaan asam lemaknya tinggi, dan sabun ini dapat dengan mudah dicampur pada beberapa jenis bahan pakan (Jenkins dan Palmquist. 1984).

Dari uraian cii atas maka dilakukan penelitian untuk mempelajari penggunaan minyak ikan lemuru dan CPO sebagai sumber energi alternatit yang banyak mengandung asam lemak poli-tak-jenuh dan melindunginya dari proses biohidrogenasi mikro-organisme rumen.

Tujuan Penelitian

Sejalan dengan uraian di atas maka penelitian ini dilaksanakan dengan tujuan :

1) Mempelajari pembuatan sabun kalsium sebagai salah satu metode/ teknologi perlindungan lemak
2) Mengetahui efektifitas sabun kalsium memproteksi asam leriak poli-tak jenuh (PUFA) terhadap biohidrogenasi rumen
3) Mengetahui pengaruh pemberian sabun kalsium sebagai bahan pakan sumber energi alternatif pada ternak ruminansia.

METODOLOGI PENELIIAN

Penelitian ini dilakukan di Lab. Nutrisi Ternak Potong dan Kerja, Fak. Petemaknan, IPB dan Lab. Kimia Pangan, Fak. Tekhnologi Pertanian, IPB dalam dua tahap.

Tahap 1: Percobaan In-Vitro

Penelitian tahap pertama dilakukan dalam dua kegiaian yaitu pembuatan sabun kalsium dan uii fermentabilitas (iv-vitra). Bahan yang digunakan untuk pembuatan sabun kalsium terdini dari minyak kan lemuru (Sardinella lemuru) dan minyak kelapa sawit kasar (CPO) sebagai sumber asam lemak. Natrium hidroksida (NaOH), Kalsium Khlorida $(\mathrm{CaCl} 2)$, dan cquades. Sebelum pembuatan sabun kalsium, terlebih dahulu dilakukan pengamatan terhadap beberapa parameter lain yaitu : bilangan iod, bilangan penyabunan dan kandungan asam lemak dari minyak ikan dan cpo serta rendemen dari sabun kaisium yang dihasilkan.

Kegiatan kedua dilakukan uif fermentabilitas (in vitro) terhadop minyak ikan. CPO dan sabun kalsium dengan bahan dasar minyak ikan dan CPO. Percobaan secara in vitro ini dilakukan untuk mempelajari efektifitas penggunaan sabun kalsium dalam melindungi asam lemak tak jenuh dari proses hidrogenasi oleh mikro organisme rumen.

Parameter yang diamati adalah kandungan asam lemak yang diidentifikasi dengan metode Kromatografi gas.

Tahap II: Percobaan In-Vlyo

Seteiah mengetahui kandungan asam lemak pada minyak ikan lemuru dan CPO serta efektifitos sabun kalsium melindungi asam lemak poli-tak jenuh dari hasi percobaan secara in vitro (tahap pertama) maka dilanjutkan dengan percobaan secara in-vivo (tahap kedua) dengan menambahkan sabun kalsium tersebut kedalam ransum temak numinansia.

Materi yang digunakan dalam percobaan ini adalah temak ruminansia (domba jantan) sebanyak 15 ekor, berumur ± 1 tahun dengan rataan bobot badan awal $14.2-16.8 \mathrm{~kg}$. Rancangan yang digunakan adalah Rancangan Acak Kelompok dengan 3 periakuan pakan, yakni $R A=t a n p a ~ s a b u n$ kalsium, $\mathrm{RB}=5$ \% sabun kalsium dan $\mathrm{RC}=10 \%$ sabun kalsium dan masing-masing perlakuan mendapat 5 ekor ternak sebagal ulangan.

Pakan perlakuan tersusun dari bahan dengan komposisi sebagaimana dalam Tabel 1 dan diberikan dalam jumlah yang terbatas (3.8% dari bobot badan), serta disesuaikan setiap minggu agar sejalan dengan kebutuhan.
Tabel 1. Komposisi banan dan kandungan nutrien ransum antor perlakuan.

Bahan Ransum (\%)	Ransum $A(R A)$	Ransum $B(R B)$	Ransum C (RC)
Rumput	40	40	40
Jagung Kuning	12.5	10	7
Bungkil Kedelei	21	22.5	24.3
Poliard	7	7	7.7
Dedak Padi	13	9	4.5
Minyak Kelapa sawit	5.5	5.5	5.5
Premix	1	1	1
Sabun Kalsium	0	5	10

Parameter yang diamati adalah : konsumsi ransum, kecemaan bahan kering dan bahan organik, pertambahan bobot badan harian, efisiensi penggunaan ransum dan feed cost per gain, Dala hasil penelitian dianalisis dengan analisis ragam dan apabila ada perbedaan, dilanjutkan dengan uil wilayah ganda Duncan (Steel dan Torie, 1980).

HASIL DAN PEMBAHASAN

Penelifian Tahap I (Percobaan In-Vitro)

Bliangan lod, Bliangan Penyabunan dan Rendemen

Bahan asam lemak untuk pembuatan sabun kalsium yaitu minyak ikan lemuru dan CPO diukur bilangan lod, bilangan penyabunan dan rendemen (Tabel 2). Nilai bilangan iod pada minyak ikan yaitu 10.4112, lebih finggi dibanding CPO yaitu 4.2225 . Hal ini menunjukkan bahwa minyak ikan lemuru mempunyci ikatan rangkap yang lebih banyak dari CPO. Ini berarti bahwa minyak ikan lemuru lebih banyak mengandung asam lemak poli fak-jenuh dibanding CPO .

Iabel 2. Bllangan lod, bilangan penyabunan dan rendemen pada minyak ikan lemuru.CPO dan sabun kalsium.

Bohan	Bilangan lod	Bilangan Peryabunan	Rendemen Sabun Kalsium $[\%]$
Minyak lkan	10.4112	294.5488	46.58
CPO	4.2225	281.2237	45.50

Minyak ikan lemuru dan CPO untúk pembuatan sabun kaisium diukur biangan penyabunannya guna mengetahui bobot NaOH optimum untuk reaksi penyabunan pada perlakuan penelitian ini. Adapun nilai bilangan penyabunan pada bahan yang digunakan adalah: 294.5488 untuk minyak ikan lemuru dan 281, 2237 untuk CPO. Melalui perbandingan bobot molekut, dapat diketahui keperluan penambahan NaOH dan CaCl_{2} darí bobot bahan dasar yang digunakan.

Pengukuran terhadap rendemen produk sabun kalsium dimaksudkan untuk mengetahui tingkat efisiensi formula sabun kalsium tersebut. Nilai rendemen dari sabun kalsium pada penelitian ini adalah 46.58% untuk minyak ikan dan $45,50 \%$ untuk CPO. Nilai rendemen dari hasil penelitian inl lebih tinggi dani hasil penelitian Waskito (1996) yang menggunakan minyak ikan lemuru sebagai bahan dasar pembuatan sabun kalsium yaitu sébesar 40%.

Kandungan Asam Lemak

Hasil analisis kandungan asam lemak dari minyak ikan lemuru dan CPO pada Tabel 3. menunjukkan bahwa perbandingan kandungan asam lemak antara minyak ikan dan CPO mempunyai perbedaan yang cukup tinggi yaitu $351.9704 \mathrm{mg} / \mathrm{gram}$ untuk minyak ikan dan $53,9331 \mathrm{mg} / \mathrm{gram}$ untuk CPO.

Tabel 3. Kandungan asam lemak (mg/g) dari minyak ikan lemuru, CPO dan Sabun Kalsium dengan bahan dasar minyak ikan lemuru dan CPO

Jenis Asam Lemak	Minyok lkan Lemuru	CPO	Sobun Kcisium	
			M. kan	CPO
Lourale [12:0]	2.9556	0.4645	0.5053	0.0936
Myristote (140)	27.7000	0.3153	4.2339	0.0815
Myrisfoleic (14:1)	11.8181	-	4.2105	,
Pentodecanocie (15:0)	2.4674	-	0.2992	-
Palmitate (16.0)	83.7968	5.6571	12.9004	2.1197
Poelmitoleic ($16: 1)$	23.0066	-	4.7102	-
Heptodec.anogle (17.0)	4.0112	3.9936	3,3025	3.3883
Stecrate ($18: 0)$	25.2417	7.2013	4.1574	0.2006
Cis-9-Oleic: [18:1)	65.1973	17.9472	15.2078	2.7887
Linolecle (18.2)	22.0143	13.5496	11.1597	4.2537
Linolenat (183)	6.3012	4.8045	5.4373	1.1791
Aractridate (20:0)	2.1810	-	0.4763	-
Eicosenocte [20:1)	2.1310	-	0.5424	-
[20:4]	5.014)	-	$0.01 \mathrm{C4}$	-
(20:5)	1.9616	-	0.1375	-
Behenate (22:0)	28.2790	-	2.8957	-
Erucic Acld (22:1)	14.8484	-	2.8935	-
[$[22 \cdot 6]$	23.0445	-	2.2964	-
TOTAL	351.9704	53.9331	753844	14.1052

Tingginya kandungan asam lemak dari minyak ikan ini disebabkan karena kandungan jenis asam lemak dori minyak ikan lebih banyak dari kandungan jenis asam lemak pada CPO. Selain ity minyak ikan mempunyai rantai hidrokarbon dengan jumlah otom karbon yang mempunyal ikatan rangkap lebih banyak yaitu sampai 22:6 (DHA) sedangkan pada CPO, rantai hidrokarbon dengan jumiah atom karban yang mempunyai ikatan rangkap hanya sampai pada $18: 3$ (finolenat).

Hasil analsis kandungan asam lemak dari sabun kalsium dengan bahan dasar minyak ikan lemuru dan CPO pada Tabel 3, menunjukkan bahwa kandungan asam lemok pada produk sabun kalsium yang dihasilkan mengalami penurunan yaitu $75,3844 \mathrm{mg} / g r a m$ untuk sabun kalsium dengan bahan dasar minyak ikan lemuru dan $14,1052 \mathrm{mg} / \mathrm{gram}$ untuk sabun kalsium dengan bahan dasar CPO. Hal ini disebabkan karena adanya penambahan $\mathrm{NaOH}, \mathrm{CaCl}_{2}$ dan akuades yang mengakibatkan kandungan asam lemak dari produk sabun kalsium yang dihasilkan lebih rendah dibanding bahan dasamya

Efektiftas Sabun Kalslum Memproteksi Asam Lemak Poll Tak-Jenuh

Hasil onalisis kandungan asam lemak dari minyak ikan dan CPO (tanpa proses penyabunon) pado rumen dan pasca rumen menunjukkan bahwa kandungan asam lemak mengalami penurunan dari rumen ke pasca rumen (Tabel 4). Paca minyak ikan, asam lemak oleat (18:1) dan linoleaie (18:2) mengalami penurunan dari 9.89 dan $63.36 \mathrm{mg} /$ gram menjadi 0.23 dan $0.95 \mathrm{mg} / \mathrm{gram}$. Sedangkan asam lemak linolenate (18:3) dan DHA (22:6) mengalami penurunan dari 10.84 dan $4.14 \mathrm{mg} /$ gram menjadi sangat kecil (trace) dan tidak terdeteksi. Hal ini juga terjadi pada CPO, dimana asam lemak oleat (18:1) dan finoleate ($18: 2$) mengolami penurunan dari 971 dan $2.50 \mathrm{mg} / \mathrm{gram}$ menjadi 0.30 dan $0.40 \mathrm{mg} / \mathrm{gram}$. Sedangkan asam lemak linolenate ($18: 3$) mengalami penurunan dari $1.54 \mathrm{mg} / \mathrm{gram}$ menjadi sangat kecil (trace) dan tidak terdeteksi.

Hasil analisis kandungan asam lemak dari sabun kalsium dengan bahan dasar minyak ikan lemun dan CPO pada rumen dan pasca rumen menunjukkan bahwa kandungan asam lemak juga mengalami penurunan dari rumen ke pasca rumen (Tabel 5). Pada sabun kalsium dengan bahan dasar minyak kan, asam lemak oleat (18:1) dan linoleate (18:2) mengalami penurunan dari 10.63 dan $34.54 \mathrm{mg} / \mathrm{gram}$ menjadi 1.35 dan $5.31 \mathrm{mg} / \mathrm{gram}$. Sedangkan asam lemak linolenate (18:3) dan DHA (22:6) Juga mengalami penurunan tetapi masih dapat terdeteksi yaitu dari 3.46 dan $6.18 \mathrm{mg} / \mathrm{gram}$ menjad 1.95 dan $2.52 \mathrm{mg} / \mathrm{gram}$. Hal ini juga terjadi pada sabun kalsium dengan bahan dasar CPO. dimana asam lemak oleat ($18: 1$) dan linoleate ($18: 2$) mengalami penurunan dari 14.08 dan $11.39 \mathrm{mg} / \mathrm{gram}$ menjadi 11,30 dan $3.72 \mathrm{mg} / \mathrm{gram}$. Sedangkan asam lemak linolenate ($18: 3$) juga mengalami penurunan tetap/ masih dapat terdeteksi yoitu dari $2.30 \mathrm{mg} /$ gram menjadi $1.02 \mathrm{mg} /$ gram.

Tabel 4. Kandungan asam lemak (mg / g) dari minyak ikan dan CPO tanpa proses penyabunan

Jensa	Mentrat ben		${ }^{\text {coo }}$	
hewrel		Pasokumen		
为		0.4		
Penlocmemole 1150				
为	${ }_{\text {la }}^{11038}$	${ }_{20}^{20}$	1398	${ }^{151}$
	${ }_{206}^{206}$		238	
9,otilis)				
	\% 3.48		220	
Senemiter				
TOIA1	, 4.14			

Hal ini menunjukkan banwa asam-asam lemak yang masuk ke rumen akan mengaiami biohidrogenasi oleh rumer. Jenkins daam Kook, et al. (2002) mengatokan bahwa lemak akan dihidrolisis dalam rumen meniadi asam lemak terbang (Free fotty Acid. FFA) dan glycerol. Selaniutnya Chalupa ef al. dalion kook et al. (2002) mengatakan bahwa asam lemak pelitak jenuh akan
mengalami biohidrogenasi oleh mikroorganisme rumen menjad asam lemak jenuh dan glyserol kemudian glyserol ini ckan dikonversikan meniodi asom lemok volatyl (Volatile Fatty Acia. VFA). Penelifian ini juga menunjukkan bahwa sabun kalsium dapat memproteksi asam lemak poli-tak jenuh dari biohidrogenasi oleh mikroorganisme rumen. Hasil penelitian Kook, et al., (2002) yang menggunokan suplementasi minyak ikan łanpa proteksi pada ternak sapi menunjukkan bahwa kandungan asam lemak terutama oleat. linoleate dan linolenate pada longissinus tidak berbeda nyata. Hal ini memberikan indikasi bahwa penambahan minyak ikan tanpa diproteksi tidak akan berpenganh terhadap kandungan asam lemak poli-tak jenuh pada karkas temak rumiransia.

Tapel 5. Kandungan asam: lemak (mg / g) dari Sabun kalsium dengan baho: dasar minyak kan lemuru dari CPO

Jenis Asam Lemak	Minyok ikan		CPO	
	Rumen	Pascafumen	Rumen	Pascorumen
Laurate (12:0]	2.18	-	0.38	0.37
Myristate (14:0)	23.33	4.11	0.52	C. 41
Myristoleic [14:1]	8.44	1.23	-	-
Pentadecanoate $\{15 ; 0\}$	1.61	-	-	-
Patmitote (16:0)	78.53	13.54	21.95	11.67
Poelmitoleic (16:1)	25.90	4.31	-	-
Heptadecanoate (17:0)	2.53	2.46	2.46	2.43
slearate (8.0)	28.81	4.83	2.31	1.09
Cis-9-Oleic (18;1)	10.63	1.35	14.08	11.30
Linoleate (18:2)	34.54	5.30	11.39	3.72
Linolenat (18:3)	3.46	1.95	230	1.02
Arrachidate (20:0)	1.84	0.73	-	-
Elcosenocte (20:1)	2.97	1.18	-	-
Behenale (22:0)	7.85	3.12	-	-
[22:6]	6.18	2.52	-	$\underline{-}$
TOTAL	238.81	46.65	55.39	32.04

Dari hasil penelifian ini menunjukkan bahwa minyak kan lemuru merupakan sumber asam lemak yang baik karena kandungon asam lemak poli tak-jenuhnya lebih tinggi dibanding cpo. Penambahan lemak pado pakan ternak ruminansia yang bertiujuan untuk meningkatkan kandungan asam lemak poil tok-jenuh perlu dilindungi/diproteksi dengan teknologi sabun kalsium (Ca-Soap).

Penelifian Tahap II: (Percobaan In-Vivo)

Penampllan Pertumbuhan

Nilal rataan konsumsi pakan, kecemaan bahan kering dan bchan organik, pertambahan bobot badan harian serta effisiensi penggunaan pakan dari hasil penelitian ini dapat difhat pada Tabel 6.
Tabel 6. Pengaruh perlakuan terhadap penampilan pertumbuhan ternak domba

Uraian	RA	RB	RC
Konsumsi BK (g/ekar/hari)	525.51	645.74	650.42
KCBK (\%)	58.40	61.83	64.83
KCBO (\%)	59.36	63.27	61.15
PBBH (9g/ekor/hai)	74.29	104.0	106.29
EPR	0.1232	0.1395	0.1428

Hasil analisis sidik ragam menunjukkan bahwa konsumsi ransum, KCBK, KCBO, pertambahan babot badan harian dan eilisiensi penggunaan ransum ticak berbeda nyata. Hal ini berart bahwa suplementasi sabun kasium dalam ransum ternak domba yang digemukan fidak mempengaruhi konsumsi ransum, kecernaan bahan kering dan bahan arganik, pertambahan bobot badan harian dan efisiensi perggunaan ransum.

Konsumsi Ransum (BK)

Hasil penelition menunjukkan bahwa tingkat konsumsi ransum berkisar antara $525.51=650.42$ (g / ek ar/hori) dan tidak ada perbedaan ontar perlakuan ($\mathrm{P}>0.05$). Tidak adanya perbedaan konsumsi ransum antar perlakuan dalam penelitian ini cisebabkan karena pemberian ransum bagi ternak domba tersebut adalah sama yokni 3.8% dari bobot badan hidup. Nilai rataan konsumsi bahan kering ini lebih rendah dengan yang dilaporkon oleh Mathius et al (1997) yaitu sebesar 640.0 dan 703.0 (g/ekor/hari), dan juga oleh Kaunang (2004) yaitu sebesar 609.64 dan 741.20 (g/ekor/hari), hampir sama dengan yang dilaporkan Uhi (2005) yitu sebesar 543.93 dan 572.98 (g/ekor/hari).

Tingkat konsumsi bahan kening masih berada dalam kisaran normal kebutuhan konsumsi bahan kering domba periode pertumbuhan yang baru disapih yakni sebesar 600 (g/ekor/hari) (NRC, 1985). Hal ini menunjukkan bahwa suplementasi sabun kalsium ternyata dapat meningkatkan kansumsi bahan kering dan kualitas ransum. Ransum yang bérkualitas baik tingkat konsumsinya relatif finggi dibandingkan dengan ransum berkualitas inferior (Parakkasi, 1995).

Kecemaan Bahan Kering dan Bahan Organik (KCBK dan KCBO)

Kualitas ransum ditentukan juga oleh fingkat kecemaan zat-zat makanan yang terkandung dalam ransum tersebut. Hasil penelitian menunjukkan bahwa rataan nilal kecemaan bahan kering dan bahan organik (KCBK dan KCBO), pada periakuan RB dan RC lebih tinggi dari periakuan RA (Tabel 4). Analisis statistik menunjukkan fidak ada perbedaan antar perlakuan ($\mathrm{P}>0.05$). Menurut Parakkasi (1995) bohwa penambahan lemak dalam ransum temak ruminansia dapat meningkatkan konsumsi, tap bila berlebihan dapat berakibat negatif dan mengganggu pencernaan. Kenyataannya bahwa dengan penambahan ransum dengan penambahan sabun kalsium 5% dan 10% (RB dan RC) dapat meningkatkan konsumsi bahan kering maupun kecemaan bahan kering dan bahan organik. Hal ini menunjukkan bahwa penambahan lemak daiam bentuk sabun kaisium dapat melindungi lemak dari sistem pencemaan dalam rumen.

Pertambahan Bobot Badan Harian (PBBH)

Pertambahan bobot badan harian (PBBH) merupakan manifestasi dari kualitas pakan yang diberikan. Analisis sidik ragam rataan pettambahan bobot badan harian antar periakuan pada tabel 6 menunjukkan tidak add perbedaan ($\mathrm{P}>0.05$). Meskipun demikian pertambahan bobot badan horian pada perlakuan yang mendapat tambahan sabun kalsium 5% dan 10% (RB dan RC) memberikan pertambahan bobot badan harian yang lebih baik yakni 102 dan 106 (g/ekor/hari) dibanding kontrol (RA) yaitu 72 (g/ekor/ hari). Tingginya pertambahan bobot badan harian poda perlakuan RB dan RC karena konsumsi bahan kering dan kecemaan bahan kering dan bahan organiknya juga tinggi. Selain itu suplementasi sabun kalsium pada perlakuan RB dan RC dapat meningkatkan suplai energi yang tinggi. Energi yang dikonsumsi dipergunakan oleh ternak pertarna untuk memenuhi kebutuhan untuk mempertohankan metabolisme basal (hidup pokok) dan untuk tumbuh atau produksi bila konsumsinya molebihi kebutuhan maintenans.

Efisiensi Penggunaan Ransum(EPR)

Hasil peneltian menunjukkon bahwa rataan nila efisiensi penggunaan ransum (EPR) adalah 0.1232 (RA): 0.1395 (RB) dan 0.1428 ($R C$) dan fidak ada perbedaan ($P>0.05$). Nilai EPR ini jika dikonversikan akan memperoleh nilai konversi pakan yaitu: 8.12; 7.17 dan 7.00 masing-masing untuk RA, RB dan RC. Menurut Speedy (1980), nilai konversi pakan ideal untuk dombo yang diberi bij-bijian adalah $7-8$, sedang untuk sapi potong program finish adalah $7: 1$ (F/G) (Parakkasi. 1995). Walaupun nilai EPR ini tidak berbeda nyata antar perlakuan tetapi nilai konversi pakan pada perlakuan RB dan RC lebih baik dibanding perlakuan RA. Hal ini menunjukkan bahwa suplementasi sabun kalsium dapat meningkatkan nilai efisiensi penggunaan ransum.

Dari hasil penelitian ini menunjukkan bahwa suplementasi sabun kalsium dalam ransum penggemukkan ternak domba dapat meningkatkan kansumsi bahan kering, kecernaan bahan kering dan bahan organik. pertambahan berat badan harian don ofisiensi penggunaan ransum walaupun secara statistik tidak ada perbedaan. Pertambohan berat badan harian pada perlakuan yang mendapat suplementasi sabun kalsium dapat mencapai pertambahan berat badan ideal yakni diptas 100 gram/ekar/hari. Demikian juga efisiensi penggunaan ransum pada periakuan yang mendapat suplementasi sabun kalsium dapat mencapai fingkat yang ideal yakni $7-8: 1$ (F/G).

"Feed Cost per Gain"

Nilai feed cost per gain (FC/G) dalam penelitian inl adalah untuk perlakuan RA (Rp $14.787, / \mathrm{kg}$), RB (Rp 17.065.-/kg) dan RC (Rp 20.615 ,-/kg). Nilai FC/G dipengaruhi oleh banyaknya konsumsi pakan, harga bahan pakan dan besarnya PBBH yang dihasil-kan. Semakin kecil nilai FC/G semakin baik, karena untuk menghasilkan PBBH yang sama dibutuhkan biaya pakan yang relatif lebih muroh. Nilai FC/G pada perlakuan RB dan RC lebih tinggi karena harga minyak ikan dan bahan kimia yang mahal sehingga untuk pembuatan 1 kg sabun kalsium dibutuhkan Rp 11.720 ,- Nilai FC/G ini hampir sama dengan yang dilaporkan Sukadi et al., (2002) yaitu Rp 11.232.-: Rp 17.940,- dan. Rp 21.068,- masing-masing untuk perlakuan kontrol dan penambahan zat pemacu per-tumbuhan phytogenic 1 dan $0.5 \mathrm{gram} / \mathrm{ekor}$

KESIMPULAN

Berdasarkan hasil keseluruhan tahapan penelitian maka secara umum dapat disimpulkan bahwa:

1) Minyak ikan lemuru merupakan sumber asam lemak poil tak-jenuh yang baik, karena kandungan asam lemak polf tak-jenuhnya cuikup banyak.
2) Teknologi sabun kalsium merupakan suatu teknologi perindungan asam lemak poli takjenuh yang baik sehingga dapat dipakai sebagai bahan ransum ternak ruminansia.
3) Suplementasinya dalam pakan penggemukkan temak domba memberikan penampilan pertumbuhan yang lebih baik tetapi relalif lebih mahal.

DAFTAR PUSTAKA

Jenkins, T.C. and D.L. Palmquist. 1984. Effect of fatty acids or Calcium Soaps on Rumen and Total Nutrient Digestibility of Dairy Rations. J Dairy Sci. 67:978-986.
Kaunang, C.L. 2005. Respons ruminan terhadap pemberian hijauan pakan yang dipupuk air belerang. Disertasi. IPB-Bogor,
Kook, K., B.H. Choi, S.S. Sun, F. Garcia and K.H. Myung. 2002. Effect of Fish Oil Supplement on Growth Performance, Ruminal Metabolism and Fatty Acid Composition of Longissimus Muscle in Koren Cattle. Asian Australian Joumal Animal Science, Yol. 15 no. 1:1-156. Joinly Published with Korean Sociaty of Anim Sci and Technology-Official Joumal of The Asian-Australian Association of Animala Production Societies (AAAP).
Lloyd, L.E., B.E. McDonald and E.W. Crampton. 1978. Fundamentals of Nutrition. Second Edition. W.H. Freeman and Company. San Francisco.
Mathius, I.W.. D. Lubis, E. Wina, D.P. Nurhayati dan IGM. Budiarsana. 1997. Penambahan kalsium karbonat dalam konsentrat untuk domba yang mendapat silase rumput raja sebagai pakan dasar. JITV. 2:164-169.
NRC. 1985. Nutrient Requirement of Sheep. Ed. Ke 6. National Academy Press. Washington.
Parakkasi, A. 1995. Ilmu Nutrisi dan Makanan Ternak Ruminan. UI Press
Soewardi, K. 2005. Ketahanan Pangan Berbasis Perikanan dan Kelautan. Makalah Semiloka : Strategi Pemantapan Produksi dan Ketersediaan Pangan. Bogor, 7 September 2005. Panifia Dies Natalis IPB Ke 42 dan Dewan Ketahanan Pangan, Departemen Pertanian RI.
Speedy, A.W. 1980. Sheep Production. Longman, London.
Steel. R.G.D. dan J.H. Torrie. 1991. Prinsip dan Prosedur Statistika. Suatu pendekatan biometrik. PT. Gramedia Pusaka Utama, Jakarta.
Sukadi. E. Purbowati dan C.M. Sri Lestari. 2002. Aplikasi Teknologi Zat Pemacu Pertumbuhan Phytogenic untuk Penggemukkan Temak Domba. Prosiding Seminar Nasional Teknologi Petemakan dan Veteriner. Pusat Penelitian dan Pengembangan Peternakan. Badan Penelitian dan Pengembangan Perfonian. Departemen Pertanian.
Uhi. H.T. 2005. Suplemen Katalitik Berbohan Dasar Gelatin Sagu. NPN dan Mineral Mikro untuk Ruminansia di Daerah Marginal. Disertasi. IPB - Bogor.
Waskito, A. 1996. Teknologi Formulasi Lemak Terlindung (Ca-Coaled Fot) dengan cara kimia. Skripsi. Fakultas Teknologi Pertanian. IPB-Bogor.

