# TINGKAH LAKU IKAN PEPEREK (leiognathus splendens) DALAM PROSES PENANGKAPAN BAGAN APUNG : PENGAMATAN AKUSTIK 

A. Tupamahu dan D. P. Matrutty<br>Program Stuai Pemanfcatan Sumberdaya Perikanan dan Fakultas Perrikanan dan imu Kelautan Unpatt, Ambon


#### Abstract

ABSTRAK Pengarnatan okustik dengan split beam echosounder dilakukan untuk mengelanui pola tingkah laku ikan peperek (Leiognathus splendens) di area cohaya dibawah cahaya lampu selama proses penangkapan dengan bagan apung. Waktu munculnya ikan serta lapisan kedalaman pergerakan ikan, dan densitas kelompoik ikan di bawah cahaya diamatai selama :20 menit. Pengamatan dimulai setelah lampu dinyalakan selama 24 menit. Kelompok ikan peperok muncul di zona iluminasi selama waktu pencahayaan 24 menit. Densitas tertinggi ketompok ikan terlihat selarna waklu dinyalakan 60 menil paca kisoran intersilids cahoya 0.1 sampai 1 lux. Tingkah renang ikan d dalam dan di luar zona iluminasi berbeda. Kecepatan renang cenderung berkurang ternadap kedaloman dimana di zone iuminasi cenderung untuk bergerak dengon pergerakan yang lebih efekkif dari zone gelap.


Kata Kuncl: ikan peperek, intensitas cohoya, densitas ikan, tingkah laku berenang.

## PENDAHULUAN

Cahaya lampu merupakan suatu optical bait yang digunakan untuk menarik dan mengkonsentrasikan ikan. Cara ini di indonesia telah lama digunakan oleh nelayan untuk menangkap berbagai jenis ikan dengan berbagai clat penangkapan seperti purse-seine, pancing dan bagan. Bagan apung merupakan salah satu jenis alat penangkapan yang sangat popuer, proses penangkapan yang dilakukan adalah menarik ikan dengan cahaya lampu, kemudian mengkonsentrasikan ikan pada catchable orea dan jaring diangkot.
lkan peperek (Lelognathus splendens) merupakan salah satu jeris ikan yang sering tertangkap dengan bagan apung. Jenis ikan ini sangat cepat beradasptasi dengan cahaya, menurut Baskoro (1999) menjelang pagi hari index cone telah mengalami adaptasi penuh terhadap cahaya. Janis ikan ini juga merupakan salah satu jenis makanan dari ikan layur (Rao and Ball, 19) yang kadang-kadang tertangkap bersama-sama.

Keberadaan ikan peperek di zona iluminasi hubungannya dengan intensitas cahaya optimum dimana ikan ini terkonsentrasi dengan densitas yong tínǵgi, dan lama keberadaannya ci zona iluminasi selama lampu dinyalakan merupakan hal yang penting untuk diketahui. Informasi ini sangat penting hubungannya dengan proses penangkapan dengan bagan apung untuk meningkatkan hasil tangkapan nelayan.

Informasi bawah air yang diperoleh dengan berbagai metode, seperti penggunaan kamera bowah air, pengamatan visual, instrumen akustik (echo sounder) dan lainnya. Instrumen akustik telah digunakan untuk kajian ilmiah seperti Scientific echo sounder SIMRAD EY 500 . Informasi yang dapat diperoleh dari instrumen ini diantaranya adalah tingkah laku individu maupun pengelompokan.

## BAHAN DAN METODE

Pengamatan diliakukan ail Teluk Pelabuhan Ratu Jawa Barat dalam proses penangkapan ikan di salah satu bagon apung (bamboo-platform lift-net). Scientific echo sounder SiMRAD EY 500 yang digunakan terdiri dafi power suplay, transduser, transceiver, personal komputer dan printer benvama. Transduser merupakan tipe spift beam dengan frekuensi 38 kHz , dipasang di tengan-tengah sumber cahaya pada kedaiaman 0,5 meter dari permukaan perairan. Transduser merubah energi listrik yang dihasilkan oleh transmiter ke energi mekanik berupa sinyal suara. Gelombang suara akan merambat di dolam air dan jika mengenai target (ikan) akan dipantulkan kembali sebagai gema (echo). Target yang dipantulkan diterima kembali menjadi energi listrik dalam bentuk voltage. Receiver amplifier menerima dan memperkuat pulasa listrik kemudian mengitim ke alat peraga berupa echogram yang terlihat poda layar monitor.

Konstruksi bogan apung adalah bambu berukuran $8 \times 8 \times 3 \mathrm{~m}$ (panjang $\times$ lebar x tinggi), untuk mengapungkannya digunakan 16 unit pelampung drum plestik. Untuk menarik dan mengkonsentrasikan ikan selama proses penangkapan aligunakan 5 lampu petromaks. Proses penangkapan dimulai dari jaring diturunkan sampai kedalaman 12 m , menyalaka, lampu dan digantung ditengah-tengah pagan apung dengan jarak dari permukaan air 0.5 m . kemudian dibiarkan sampai ferihat adanya ikan yang terakumulasi di zona iluminasi, dan jaring diangkat melalui bantuan roller.

Sebelum dilakukan pengamaton tingkah laku ikan, diakukan pengukuran intensitas cahaya bawah air dari 5 lampu petromaks dengan lux meter buwah air mode OSK 3113 ANA 200. Perekaman data akustik tentang tingkah laku ikan di bawah cahaya lampu dilakukan dengan selang waktu tertentu. Waktu perekaman pertama kali dilakukan setelah lampu dinyalakan selama 24 menit. Hasil peresaman dismpan di hard disk komputer kemudion dilakukan pengolahan lebih lanju melalui pemrosesan sinyal dengan program SIMRAD EP 500. Pomrosesan sinyal hasil rekaman dikatagorikan berdasarkan interval kedalaman 2,5-8 meter, 8-12 meter, dan di bawah jaring (14-20 meter). Cambar 1 menunjukkan ilustrasi pemasangen perangkat akustik di bawah lampu dimana aring diturunkan sampai kedalaman 12 m .


Gambar 1. llustrasi pengamaton tingkah laku ikan peperek dalam proses penangkapan ikan dengan bagan apung dengan perangkal akustik.

## HASIL DAN PEMBAHASAN

## Distribusi lluminasi Cahaya Bawah Air

Ada berbagai bentuk distribusi intensitas cahaya lampu tergantung dari tipe lampu yang digunakan sebagai sumber cahaya. Distribusi intersitas cahaya dari lampu petromaks berbentuk seperti kupu-kupu dimana intensitas tertinggi pada kedua sisi sudut $90^{\circ}$, kemudian berkurang secara drastis dengan bertambahnya jarak (Baskoro, 1999). Hasil pengukuran iluminasi cahaya bawah air dari 5 lampu petromaks pada bagian tengah bagan (gambar 2) menunjukkan bahwa intensitas cahaya dalam air berkurang secara eksponensial ke kedalaman peroiran, secara matematik diungkapkan melalui fungsi eksponensial $y=199,32 \mathrm{e}^{-1,1505 \mathrm{x}}$.

## Distribusi kelompok ikan

Salah satu penampilon dari echogram berdasarkan hasil pemrosesan sinyal dengan program SIMRAD EP 500 menunjukkan bahwa ikan yang tertarik dengan sumber cahaya lebih terkonsentrasi di sekitar kedalaman dekat dengan jaring (Gambar 3). Keberadaan ikan dï zona iluminasi ini dengan kepadatan yang tinggi pada lapisan kedalaman 8 sampai 12 meter (intensitas cahaya antara 1 sampai 0,1 lux) (Gambar-4).

Ikan peperek (Leiognathus splendens) merupakan jenis ikan yang tergolong fototaksis positip yang sangat cepat beradaptasi dalam lingkungan cahaya sekolipun berada di zona lluminasi dengan intensitas cahaya yang relatif kecil. Densitas ikan peperek di zona iluminasi dalam kunun waktu 120 menit setelah lampu dinyalakan terlihat bahwa adanya fluktuasi densitas ikan dari waktu ke waktu. Densitas tertinggi muncul pada saat lampu dinyalakan selama 60 menit di kedalaman perairan 8 sampai 12 m dengan intensitas cahoya $1-0,1$ lux ( 1.7 fishes $/ \mathrm{m}^{3}$ ). Kepadatan ikan peperek di zona iluminasi yang dikatagorikan kedalam schooling muncul pada saat lampu dinyalakan selama 44 menit sampai dengan waktu pengamatan 120 menit. Seperti hainya ikan hering dewasa membentuk schooling kadangkadang ditemukan di musim dingin dengan densitas antara 0,5 sampai 1,0 fish/m³ (Radakov, 1973).


Gambar 2. Distribusi liuminasi cahaya bowah air dari 5 Imapu petromaks yang diukur di bagian tengah bagan apung


Gambar 3. Salah satu Echograme image distribusi ikan paparek di catch able area bagan apung


Gcmbar 4. Densitas ikan selama proses penangkapan bagan apung sebagai fungsi dari lama wakiu lampu dinayalakan. Tanda segi empat (zona iluminasi 15-1 lux kedalaman 5-8 m ), kerucut ( $1-0,1$ lux kedalamon $8-12 \mathrm{~m}$ ), kall (Zona galap di bawan jaring $14-20 \mathrm{~m}$ )

## Pola Pergerakan Individu

Kecepatan renang merupakan saiah satu tingkah laku lkan yang penting untuk diketahui hubungannya dengan alat penangkapan. Pengamatan tingkah laku ini dapat dilakukan dengan perangkal akustik sistem split beam fransducer, dimana ping-ping yang berikutnya pada target ikan yang sama dapat memberikan informasi tentang kecepatan renangnya (Jaya dan Pasaribu, 2000). Gambar 5 merupakan distribusi kecepatan renang sebagai fungsi dari kedalaman renang. Terihat bahwa kecepatan renang cenderung berkurang dengan bertambahnya kedalaman baik di zona iluminasi maupun di luar zona iluminasi. Kecepatan renang pada zona iluminasi terdistribusi sekitar 0.5 $\mathrm{m} /$ det sedangkan di zona gelap kecepatan renang lebih menyebar bahkan sampai dengan mendekati $2 \mathrm{~m} / \mathrm{del}$.
lkan yang membentuk schooling biosanya meningkatkan efisiensi renang dari anggotaanggotanya agar supaya posisi individu dalam schooling relatif terhadap yang lainnya (Moyle and Cech Yr. 1988). Gambar 5 menunjukkan bahwa setiap individu ikan di zona iluminasi lebih efektif dalam mempertahankan pergerakannya dibandingkan dengan di luar zona iluminasi. Hal ini teriihat pada pola pergerakan di zona 1-0,1 lux, cistribusi kecepatan renangnya lebih mengelompok sekitor $0,3-0,8 \mathrm{~m} / \mathrm{det}$ dengan standar deviasi yang lebih kecil daripada di luar zona iluminasi.


Keterangan:- Kecepatan renang rata-rata dan standar deviasi di zona $15-1$ lux adalah $0.44 \mathrm{~m} /$ det dan 0.28 Kecepatan renang rata-rata dan standar deviasi di zona $1-0.1$ lux adalah $0.54 \mathrm{~m} /$ det dan 0.26 Kecepatan renang rata-rata dan standar deviasi di zona gelap adalah $1,04 \mathrm{~m} /$ det dan 0,46
Gambar 5. Hubungan antara kedalaman renang dan kecepatan renang kan selamo proses penangkapan bagan apung. Tanda segi empat (zona iluminasi 15-1 lux), kerucut (1-0,1 lux ), kali flona gelap di bawah jaring).

## KESIMPULAN

Ikan peperek (Leiognathus splendens) tertarik dengan cahaya lampu dan terkonsentrasi dengan densitas yang tinggi pada iluminasi cahaya 0,1 - 1 lux. Pola pergerakannya di zona iluminasi lebih efektif daripada di luar zona iluminasi untuk mempertohankan keberdaoannya dalam schooling. Sangatiah penting untuk mengatur intensitas cahaya pada proses penangkapan ikan peperek dengan alat tangkap bagan apung guna meningkatkan efektifitasnya.

## DAFTAR PUSTAKA

Baskoro. MS, 1999. Capture process of the bamboo-platform liftnet with light attraction (Bogan). Disertation of Graduale School of Fisheries Tokyo University of Fisheries (Unpulished).
Jaya I and Bonar P. Pasaribu, 2000. Evaluation of Swimming Speed and Direction of Pelagic Fish in the Sunda Straits : Acoustical Approach. In Sustainabie Fishing Technology in Asia Fowards the 21 : Century Ed. By I Arimota and J. Haluan, Proceedings of The $3^{\text {rd }}$ JSPS Initernational Seminar on Fisheries Science in Tropical Area in Bat IsiandIndonesia August 1999. TUF-1SPS Intemational Project Vol. 8: P 242-247.
Moyle. P. B and J. $J$ Cech Jr, 1988. An introduction to ichthyology. Prentice-fill inc. : 559 p.
Radakov D.V, 1973 . Schooling in the Ecology of. Fish.isfael, Program for Scientific Transiation, Haisted Press Book, Johm Wiey and Sons. Inc., New York: p 58-77.
Rao. K. V. and D. V. Ball. 1984. Marine Fisheries. Tato McGraw Hil Publishing, Company Limited, New Delhi ;470 p.
SIMRAD, 1995 . Instruction Manual of Simrad EY 500 Portable scientitic Echo Sounder, simrad Norge

