PENGARUH KONSENTRASI LARUTAN ASAM ASEIAT DAN LAMA PEREBUSAN TERHADAP KANDUNGAN GIZI DAN UREA TEPUNG IKAN CUCUT (Squalus milsukuril)

Luthfie Hutuely
Penelifi BPTP Maluku

Abstract

Abstrak Untuk memperbaiki mutu tepung ikan, telah dilakukan suatu penelitian penggunaan larutan asam asetat dalam pengoiahan tepung ikan cucut. Hasil penelitian menunjukkan bahwa perlakuan konsentrasi larutan asam asetat (R). lama perebusan (T) dan interaksi antara kedua perlakuan (RI) sangat berpengaruh terhadap kandungan gizi dan urea tepung ikan cucut. Perlakuan tanpa menggunakan asam asetat mauoun perlakuan asam asetaf dengan lama perebusan 45 menit (ROT3. R1T3. R2T3) merupakan kombinasi perlakuan terbaik karena mempunyai kadar air, lemak dan urea yang rendoh serta kandungan protein kasar yang lebin tinggi. Produk tepung kan yang dihasilkan dari perlakuan-perlakuan ini umumnya mempunyal kandungan gizi yang baik dan memenuhi persyaratan mutu standar dengan kisaran. kadar air 5,33-7.17 \% bb, protein kasar 83,95-92,84 \% bk, lemak 0.44-0.76 \% bk dan kadar abu 4.82-13.89 \% bk.

Kata Kuncl: konsentrasi forutan, asam asetat, lama perebusan, tepung ikan cucut.

PENDAHULUAN

Tepung ikan merupakan salah satu komponen penting dalam susunan ransum temak dan sangat dipertukan untuk menunjang pengembangan usaha petemakan khususnya peternakan unggas serta usaha budidaya likan dan udang. Untuk menjamin kemantapan perkembangan temak unggas, budidaya ikan dan udang tersebut pada saat sekarang maupun di masa-masa yang akan datang, perlu diupayakan penyediaan tepung ikan melalui produksi dalam negen dengan jumiah yang mencukupl, mutunya baik dan harganya dapat terjangkau oleh para peternak atau pengusaha pakan ternak.

Usaha pengolahan tepung ikan di daiam negeri sudah berlangsung lama, di mana umumnya dilakukan oleh industri pabrik dan industri rakyat (rumah tangga) yang keduanya berbeda baik dalam teknik pengolahannya moupun bahan baku yang digunakan sehingga menghasilkan mutu tepung ikan yang bervariasi (Saleh, et el. 1986; Indriyati, et el. 1990). Sumber bahan baku tepung ikan yang digunakan selama ini umumnya berupa jenisjenis ikan yang kurang ekonomis (ikan rucah), hasil tangkapan samping (HTS) dan sisa-sisa olahan ikan yang berasal dari limbah pengolahan ikan kaleng, ikan asap dan ikan asin. Di wilayah Timur

Indonesia khususnya perairnn Maluku, beberapa jenis ikan HTS pukat udang seperti manyung, figa wajah, cucut, pari, dan lain-lain belum dimanfaatkan secara optimal sehingga sering kali dibuang. Dalam kenyataannya belum ada angka yang pasti mengenai jumiah HTS pukat udang di perairan Laut Arafura. namun dalam Anonim (1992 a) disebutkan bahwa jumlah perkiraan keseluruhan adalah 200.000 ton/tahun. Vendeville (1990) menyatakan bahwa jurniah HTS yang dibuang ke laut dari hasil tangkapan di Laut Arafura adalah 100.000 ton/tahun.

Produksi hasil tangkapan ikan cucut di Indonesia dari tahun ke tahun cenderung meningkat, namun pemanfaatan dagingnya masih terbatas pada sebagian kecil masyarakat. Yunizal et al. (1983) serta Malawat et. el. (1994) menyatakan bahwa pada umumnya pemanfaatan dan pengoiahan daging ikon cucut di daerah Maluku belurn berkembang, masih terbatas pada sirip dan hati, sedangkan dagingnya aibuang meskipun ada sebagian kecil masyarakat nelayan memanfaatkan daiam bentuk segar atau penggaraman. Hat ini disebabkan alasan kultural atau kebiasaan makan, namun alasan yang umum. adalah bau pesing (amoniak) yang kuat dari daging cucut tersebut.

Permasalahan yang dihadapi sekarang adalah produksi tepung ikan di dalam negeri sendirl masih sangat rendah sehingga untuk memenuhi kebutuhan dalam negeri masih banyak dimpor dari berbagai negara. Data produksi tepung ikan sampai dengan tahun 1994 menunjukkan bahwa produksi tepung ikan di dalam negeri hanya dapat memenuhi kebutuhan rata-rata/tahun sekitar 5%, sedangikan sisanya (95%) merupakan tepung ikan impor (Anonim, 1996 a dan 1996 b). Dalarn industri rumah tangga, bahan baku yang digunakan adalah berupa ikan-ikan yang sudah tidak layak lagi untuk pengolahan ikan pindang atau ikan asin. Hal ini yang menyebabkan mutu tepung ikan di dalam negeri tictak sebaik mulu tepung ikan impor khususnya. kandungan protein yang berkisar antara 30-65\% (Erlina, et el. 1985: Kompiang. 1985; Saleh. et el. 1986). Perbedaan yang paling menyolok antara mutu tepung ikan daiam negeri dengan tepung ikan impor adalah pada kadar air dan protein, di mana produk dalam negeri berkisar antara 8,00 17.20% dan $31,10-54,90 \%$, sedangkan produk luar negeri $6,00-9,30 \%$ dan $63,8767.40 \%$ (Anonim, 1985a: Kompiang, 1985: Hardy dan Masumoto, 1991).

Bila ditinjau dan potensi sumberdaya perairan di Indonesia yang dapat dimantaatkan s bagai bahan baku tepung ikan, maka produksi tepung ikan di dalarn negeri masih dapai citingkatkan sehingga volume impor dapat dikurangi. Martosubroto dan Naamin (1985) menyatakan bahwa beberapa sumberclaya perairan di indonesia terutama sumberdaya perikanan laut yang dapat dimanfaatkan untuk pengembangan dan peningkatan produksi tepung ikan antara lain HTS dari pukat udang khususnya dl bagian Timur Indonesia (perairan sekitar Maluku dan Irian Jaya), sisa-sisa olahan (limbah) dari pengolahan ikan kaleng, ikan asap, osin, udang beku, dan berbagai jenis ikan rucah dari hasil tangkapan nelayan di pusat-pusat penangkapan yang tersebar di hampir sernua daerah seperti Banyuwangi, Muncor, Bali, Sulawesi Utara, Sumatera dan lain-lain. Selain itu masih terclapat daerah perairan yang memungkinkan untuk pengembangan usaha perikanan laut dan dapat menunjang pengembangan industri tepung ikan yakni Kalimantan Barat dan Selatan, Sulawesi Selatan dan Tenggara, Nusa Tenggara, Maluku dan Irian Jaya.

Dari uraian ci atas, maka telah dilakukan penelitian tentang kandungan gizi dan urea tepung ikan yang diolah dari bahan baku ikan cucut. Penelitian ini bertujuan untuk melihat pengaruh konsentrasi larutan asam asetat terhadap kandungan gizi dan urea tepung ikan cucut. Hasil penelitian diharapkan dapat memberikan informasi tentang pengaruh perlakuan konsentrasi larurtan asam asetat dan periakuan lama perebusan yang optimal terhadap kandungan gizi dan urea sehingga dapat dipertimbangkan dalam memperbaiki atau meningkatkan mutu tepung ikan yang berasal dari bahan baku ikan cucut,

BAHAN DAN METODE

Bahan dan Alat

Bahan baku yang digunckan dalam penelitian adalah ikan cucut (Squalus mitsukuri) yang diperaleh dari hasil tangkapan nelayan di perairan Teluk Ambon (Kotamadya Ambon). Bahan bantu yang digunakan terdiri dari es balok, asam asetat serta bahan-bahan kimia dan mikrobiologi seperii H2SO4, TCA DMAB, NaOH, media agar don lain-lain.

Peralatan yang digunakan terdiri dari peralatan pengolahan tepung ikan dan peraiatann laboratorium seperti keranjang, ember, wadah perebusan, alat pengepres, pengering, penggiling, timbangan, oven, desikator, spektrofotometer, gelas piala, gelas ukur, labu ukur, erlenmeyer dan lain-lain.

Metode Penelitian

Metode penelitian dan analisa data dirancang menurut rancangan acak lengkap (RAL) faktorial 3×4 dengan sumber keragaman sebagal berlkut :

- Perlakuan konsentrasi larutan asam osetat (R) terdiri dari figa taraf yakni tanpa asetat (Ro) asam asetat 1 \% $\left(R_{1}\right)$ dan asam asetat $2 \%\left(R_{2}\right)$.
- Perlakuan lama perebusan (T) yokni 15 menit (T_{1}), 30 menit (T_{2}), 45 menit (T_{3}) dan 60 menit (T_{4}).

Pengamatan ini dilakukan sebanyak dua kail ulangan terhadap parameter kandungan giz yakni kadar air, protein kasar, lemak dan kadar abu serta kandungan urea. Pengukuran kadar air dilakukan dengan metode oven, protein kasar (metode Kjeldahl), lemak (metode Soxhlet), kadar abu (metode pemijaran] seperti diuraikan dalam Hasegawa (1987). Sedangkan pengukuran kandungan urea dilakukan dengan menggunakan spektofotometer.

Prosedur Penelifian

Bchan mentah ikan cucut |Squalus mitsukurii) diperoleh dari nelayan, segera disianggi dengan cara memisahkan jeroan (hati), sirip, kepala dan kulit. Dagingnya diambil, dicuci dan dimasukan ke dalam kotak pendingin (cool box) sambil diberi pecahan es dengan perbandingan berat ikan dan es $2: 1$. Selanjutnya ditutup rapat dan segera diangkut ke laboratorium Balai Pengkajian Teknologi Pertanian (BPTP) Ambon.

Setibanya di laboratorium, daging ikan dibersihkan, dicacah/difilet secara vertikal sesuai lingkaran tubuh ikan dengan ketebalan 2 cm dan diameter antara $5-7 \mathrm{~cm}$. Filet-filet ikan ini dibagi menjodi figa taraf pertakuan larutan asam asetat ($\mathrm{Ra}_{0}, \mathrm{R}_{1}, \mathrm{R}_{2}$) dengan masing-masing taraf terdiri dari empat taraf perlakuan lama perebusan ($\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}, \mathrm{~T}_{4}$). Setelah perebusan, dilakukan pengepresan dengan tekanan 150 $\mathrm{kg} / \mathrm{cm}^{2}$ selama 15 menit, kemudian dikeringkan dengan alat pengering buatan (mechanical dryer) selama 16 jam pada suku antara $40^{\circ}-60^{\circ} \mathrm{C}$ dan RH 35%. Setelah itu dilakukan penggilingan/penepungan sehingga diperoleh produk akhir berupa tepung ikan.

HASIL DAN PEMBAHASAN

Kadar Alr

Kadar air tepung ikan sangat nyata dipengaruhi oleh perlakuan asam asetat, lama perebusan dan interaksi antara asam asetat dengan lama perebusan (Lampiran 2a). Kadar air tepung ikan pada perlakuan tanpa menggunakan asam asetat (RO) lebih rendah dan berbeda dengan periakuan asam asetat, tetapi antara asam asetat 1 \% (R1) dan 2 (R2) tidak berbeda. Ini disebabkan keadaan air pada perlakuan R1 dan R2 bersifat air terlarut yang berbentuk larutan pekat oleh penambahan larutan .asam asetat sehingga gukar dilepaskan dari bahan padat saat proses pengepresan dan pengeringan. Syarief dan Halid (1993) menyatakan bahwa kebanyokan bahan mengandung sejumlah besar bahan-bahan yang larut di dalamnya, misainya garam-garam mineral dan asam-asam organik yang membentuk larutan pekat dalam bahan pangan tersebut. Tekanan vap dari larutan ini akan lebih rendah daripada air bebas dan tergantung pada derajat kepekatan larutannya. Proses pengeringan dengan suhu tinggi fidak selalu dapat menguapkan air terlarut yang terdapat dalam bahon pangan, karena air tersebut harus berdifusi melalui lapisan-lapisan padat dari bahan pangan dan memerlukan waktu yang relatif lama.

Kadar air tepung ikan dari ketiga perlakuan terlihat semakin menurun sejalan dengan lama perebusan seperti terfihat pada Gambar 1. Pengaruh interaksi menunjukkan bahwa kadar air tepung ikan terendah dicapai pada lama perebusan 60 menit (T 4), baik untuk perlakuan tanpa menggunakan asam asetat (ROT4) maupun untuk perlakuan asam asetat (R1T4, R2T4). Dari uji BNJ menunjukkan bahwa periakuan interaksi umumnya saling berbeda, kecuali interaksi ROT2 dan R1T2 tidak berbeda. Hal ini menunjukkan bahwa pada periakuan asam aselat 1 \% dengan lama perebusan 30 menit belum mengubah kondisi air dalam daging ikan sehingga sifat air masih sama dengan periakuan tanpa asam asetat.

Garnbar 1. Kadar Air Tepung lkan Cucut

Protein Kasar

Kandungan pretein kasar tepung ikan sangat nyata dipengaruhi oleh perlakuan asam asetat, lama perebusan dan interaksi antara, asam asetat dengan lama perebusan (Lampiran 3a). Kandungan protein kasar pada periakuan konsentrasi asam asetat saling berbeda di mana perlakuan asam asetat 2 \% (R2) mempunyai kandungan protein kasar lebih tinggi daripada periakuan asam asetat 1 \% (R1) dan tanpa asarn asetat (RO). Nilai rata-rata kandungan protein kasar pada perlakuan R2 adalah 91,77 \% bk. sedangkan perlakuan R1 dan R0 masing-masing sebesar 91.20 dan $90,63 \%$ bk. Tingginya nilai protein pada perlakuan R2 ini diduga karena terjadi degradasi protein dari golongan protein turunan primer khususnya protean. Winarno (1992) menyatakan bahwa turunan protein primer merupakan hasil degradasi pada tingkat permulaan denaturasi di mana protein merupakan hasil hidrolisis oleh air, asam encer atau enzim yang bersifat tak larut.

Kandungan protein kasar pada ketiga perlakuan teriihat meningkat sejak lama perebusan 15 menit (TI) hingga 45 menit (T3). selanjutnya pada lama perebusan 60 menit (T4) kandungan protein kasar cenderung menurun atau konstan. Uji BNJ menunjukkan bahwa kandungan protein kasar berbeda dari perlakuan lama perebusan T1 sampai T3, sedangkan antara T3 dan T4 tidak berbeda. Ini menunjukkan
bohwa lama perebusan yang optimal untuk ketiga perlakuan tersebut adalah 45 menit karena menghasilkan nilai protein kasar yang lebih tinggi dari periakuan lama perebusan lainnya. Nilai rato-rata kandungan protein kasar selama perebusan 45 menit adalah 91,79 \% bk untuk periakuan R0. sedangkan untuk perlakuan R1 maupun R2 masing-masing sebesar $92,{ }^{\prime} 0$ dan $92,813 \%$ bk. Pengaruh interaksi terhadap kandungan protein kasar tepung ikan adalah seperti terfihat pada Gambar 2.

Kandugan Protein Kasar Tepung Ikan Cucut

Gambar 2. Kandungan Protein Kasar Tepung lkan Cucut

Bila dilihat dari reduksi protein kasar selama, proses perebusan, perlakuan $R 0$ mengakibatkan persentose kehilangan protein kasar lebih besar yakni mencapai 0.98% sedangkan perlakuan RI sebesar $0,64 \%$ dari kandungan protein bahan mentah ($92.7 \% \mathrm{bk}$). Hilangnya kandungan protein kasar ini diduga karena ada sebagian komponen protein terutama, dari protein sarkoplasma. ikut larut dalam air dan tidak terkoagulasi oleh panas selama proses perebusan. Jebsen (1962) dan Shahidi (1994) menyatakan bahwa. protein daging ikan atau hasil-hasil laut dapat digolongkan atas tiga tipe yaitu sarkoplasma, myofibril dan stroma. Protein sarkoplasma terdiri dari myogen, globulin dan mioglobin dengan jumlah sebesar 25-30\% terdapat dalam daging ikan dan bersifat larut dalam air. Menurut Winarno (1992) bahwa, golongan protein yang mudah larut dalam air dan tidak terkoagulasi oleh panas adalah protamin dan turunan protein setelah mengalami degradasi yaitu proteosa dan pepton.

Lemak

Kandungan lemak tepung ikan sangat nyata dipengaruhi oleh perlakuan lama perebusan tetapi perlakuan asam. asetat moupun interaksi antara asam, asetat dengan lama perebusan tidak berpengaruh (Lampiran 4a). Semakin lama perebusan, kandungan lemak semakin menurun di mana nilai rata-rata kandungan lemak tepung lkan pada perlakuan lama perebusan 15 menit (TI) adclah $0,77 \%$ bk kemucian turun menjadi 0,47 dan 0,44 \% bk masing-masing pada lama perebusan 45 menit (T3) dan 60 menit (T4). Hasil pengamatan kandungan lemak tepung ikan dapat dilihat pada Gambar 3.

Dari uif BNJ temyata bahwa perbedaan kandungan lemak terlihat pada perlakuan lama perebusan II sampai T3, tetapi antara T3 dan 14 tidak berbeda. Ini menunjukkan bahwa penurunan kandungan lemak mencapai titik konstan pada perlakuan lama perebusan 45 menit dengan reduksi lemak sebesar 52% dari lemak bahan mentan. Turunnya kandungan lemak disebabkan oleh pengaruh pemanasan. yang mengakibatkan pencairan lemak selama, perebuscn. Muchtadi (1989) serta Gaman dan Sheringion (1992) menyatakan bahwa lemak tidak lorut daiam air dan akan mencair apabila dipanaskan pada renfangan suhu tertentu di mana kebanyakan berkisar antara $30^{\circ}-40^{\circ} \mathrm{C}$. Menurut Winarno (1992) bahwa titik lebur suatu lemak atau minyak dipengaruhi oleh sifat asam lemak yaitu daya tarik antara asam lomak yang berdekatan dalam. kristal. Makin kuat ikatan antar molekul asam lemak, makin banyak panos yang diperlukan untuk pencairan kristal. Asam lemak dengan ikatan yang tidak begitu kuat memerlukan panas yang lebih sedikit, sehingga. energi yang diperlukan untuk mencairkan kristal-kristalnya makin sedikit dan titik leburnya lebih rendah.

Tanpa Asmm Asetat Asam Asetat 1% 日Asam Asetat 2%

Gambar 3. Kandungan Lemak Tepung Ikan Cucut

Kadar Abu

Nilai kadar abu tepung ikan (Gambar 4) sangat nyata dipengaruhi oleh periakuan asam asetat lama perebusan dan interaksi antara perlakuan asam asetat dengan lama perebusan (Lampiran 5a). Nïai rata-rata kadar abu pada periakuan tanpa asam asetat ($R 0$) berbeda dengan perlakuan asam asetat 2 \% (R2), tetapi fidak berbeda dengan asam. asetat 1 \% (R1) sedangkan antara periakuan R1 dan R2 saling berbeda. Nilai rato-rata kadar abu pada periakuan R2 lebih rendah yakni sebesar 5.08 \% bk, sedangkan pada periakuan RO dan R1 masing-masing sebesar 5.65 dan 5267% bk.

Kadar Abu Tepung Ikan Cucut

Gambar 4. Kadar Abu Tepung lkan Cucut
Nilai rata-rata kadar abu pada periakuan asam asetat (R1 dan R2) terlihat meningkat dari lama perebusan 15 menit (T1) sampai 30 menit (T2), selanjutnya terjadi penurunan pada lama perebusan 45 menit (T3) sampai 60 menit (T4) seperti terlinat pada Gambar 4. Pada perlakuan tanpa asam asetat (RO) terjadi peningkatan kadar abu dari lama perebusan 15 menit sampai 45 menit kemudian turun pada lama perebusan 60 menit, Ini berarti bahwa lama perebusan yang optimal pada periakuan RO adaiah 60 menit, sedangkan perlakuan R1 dan R2 adalah 30 menit karena menghasilkan kadar abu tepung lkan yang relatif lebih besar dari perlakuan lama perebusan lainnya. Tingginya kadar abu tepung ikan ini diduga karena tingginya nilai protein terutama senyawa protein yang mengandung beberapa unsur mineral seperti zink (Zn), fluor (F) dan besi (Fe). Kuhnau (1962) mengemukakan bahwa mineral mikro (trace element) yang berasal dari laut, kebanyakan terdapat dalam protein yang terkandung dalam daging dan jeroan ikan. Unsur-unsur mineral mikro ini seperti tembaga (CU), fluor (F), yodium (1) dan zink (Zn) di mana Zn merupakan bagian yang besar dalam daging dan organ lainnya. Winamo, (1992) menyatakan bahwa flour terdapat
dalam tanaman, ikan dan makanan hasil ternak di mana. 5-15 ppm florida terkandung dalam bahan makanan. dari lout. Zink merupakon komponen penting dari enzim. misainya enzim karbonat anhidrase yang terdapat dalam sel darah merah dan enzim karboksi peptidase setta dehidrogenase dalam organ hati.

Urea

Kandungan urea tepung ikan (Gambar 5) sangat nyata dipengaruhi oleh perlakuan asam asetat dan lama perebusan, sedangkan interaksi antara perlakuan asam asetat dengan lama perebusan tidak berpengaruh (Lampiran 6a). Nilai rata-rata kandungan urea pada perlakuan tanpa menggunakan asam asetat (RO) adaiah 1.50 \% bk lebih rendah dan berbeda dengan perlakuan asam asetat 1 \% $\mid R 1)$ dan 2 \% (R2), tetapi antara perlakuan R1 dan R2 tidak berbeda. Nilai rata-rata kandungan urea tepung ikan pada perickuan R1 adalah 1.59 \% bk dan R2 sebesar 1.58 \% bk.

Semakin lama perebusan, nilai rata-rata kandungan urea semakin menurun di mana pada periakuan lama perebusan 45 menit (13) diperoleh nilai urea terencah dan bebeda dengan perlakuan lama perebusan 15 menit (T 1) maupun 30 menit (T 2), tetapi tidak berbeda dengan perlakuan lama perebusan 60 menit (T4). Nilai rata-rata kandungan urea tepung ikan pada perlakuan lama perebusan 15 , 30,45 dan 60 menit adalah berturut turut 1,78; 1.57; 1,47 dan $1,41 \% \mathrm{bk}$. Hasil pengamatan ini menunjukkan bahwa dengan perlakuan lama perebusan 45 menit dapat menghilangkan kandungan urea sebesar 5,47 \% bk atau sekitar 76 \% dari kandungan urea bahan mentah. Reduksi urea ini sebagai aklbat dari pengaruh pemanasan selama perebusan karena dengan pemanasan secara kontinyu dapat melemahkan sistem ikatan urea. dan metnudahkan penghancuran sehingga sebagian besar kandungan urea akan tereduksi. Priono, et al. (1984) mengemukakan bahwa pemasakan daging cucul yang berukuran $10 \times 5 \times 2.5 \mathrm{~cm}$ dengan larutan basa kalium hidroksida 2.5 \% selama 45 menit dapat mereduksi kandungan urea sebanyak 80%.

Dari hasil pengamatan kandungan gizi dan urea ai atas, menunjukkan bahwa periakuon tanpa menggunakan asam asetat maupun perlakuan asam asetat dengan lama perebusan 45 menit [ROT3, RIT3, R2T3) merupakan kombinasi perlakuan terbaik karena menghasilikan produk tepung ikan yang mempunyai kadar air, lemak dan urea terendah serta kandungan protein yang tinggi.

Gambar 5. Kandungan Urea Tepung lkan Cucut

KESIMPULAN

Kandungan gizi tepung ikan sangat nyata dipengaruhi oleh perlakuan konsentrasi larutan asam asetat, lama perebusan dan interaksi antara kedua perlakuan tersebut. Perlakuan tanpa menggunakan asam asetat maupun perlakuan asam asetat dengan lama perebusan 45 menit (ROT3, R1T3, R2T3) merupakan kombinasi perlakuan terbaik karena mempunyai kadar air, lemak dan urea yang rendah serta kandungan protein kasar yang lebih tinggi. Produk lepung ikan yang dihasilkan dari perlakuan-pelakuan ini umumnya mempunyai kandungan gizi yang baik dan memenuni persyaratan mutu standar dengan kisaran, kadar air 5,33-7,17 \% bb, protein kasar 83,95-92,84 \% bk, lemak 0,44-0,76\% bk dan kadar abu 4,82-13,89 \% bk.

DAFTAR PUSTAKA

ce D D
Anonim, 1992 a. Buku Tahunon Statistik Perikanan. Dinas Perikanan Propinsi Dafi I Maluku, Ambon.
_, 2000 a. Statistik Perikanan Indonesia 1998. Direktorat Jenderal Perikanan. Departemen Kelautan dan Perkanan. Jakarta.
—— 2000 b. Statistik Perikanan Indonesia 1998. Direktorat Jenderal Perikanan. Departemen Kelautan dan Perikanan. Jakarta.
Erlina, M. D., M. Soleh, A. Sari. N. Hak dan P. Sarnianto. 1985. Mendapatkan Cara Pengolahan Tepung kan Secara Sederhana. 1. Pengolahan Tepung lkan dengan Skala Bosar. Laporan Penelitian Teknologi Perikanan. No. $46: 25$ 35. Balai Penelitian Perkanan Lout. Badan Penelitian dan Pengembangan Pertanian. Departemen Perfonian Jakarta.
Ghaman. P. M. dan K. B. Sherington. 1992. limu Pangan. Pengantar limu Pangan Nutrisi dan Mikrobiologi. Edisi Keduã. Gajah Mada University Press, Yogyakarta
Hasegawa, H. 1987. Laboratory Manual on Analyfical Methods and Procedure for Fish and Fish Product. Marine Fisheries Research. Departemen Southheast Asian Fisheries Development Centre, Singapura.
Hordy. R. W. and I. Masumoto. 1991. Specification for Marine By Producs for Aquaculture. Proceedings of the Aquaculture Feed Processing and Nutrition Workshoop. Thailand and Indonesia. American Soybean Association, singapore.
Incriyati, S. W. Widiatmini dan S. Prasetyo. 1990. Pembuatan Tepung lkan dengan Pengeringan Serboguna. Prosiding Seminar Teknologi Pengeringan Komoditas Pertanian. Bodan Penelfian dan Pengembangan Pertanian. Deportemen Perfanian, Jakarta.
Jebsen, J. W. 1962. Protein In Fish Muscle. In : Fish in Nutrition. E. Heen and R.Kreuzer (ED) Published by Fishing News (Books) Ltd. London
Kompiang. I. P. 1985. Tepung lkan untuk Temak. Prosiding Rapatteknis Tepung lkan. Pusat Penelitian dan Pengembangan Pertanian. Badan Penelitian dan Pengembangan Pertanian. Departemen Pertanian, Jokarta.
Kuhnau, J. 1962 importance of Miror Element in Food, Especially in Fish. In : Fish in Nutrilion. E. Heen ond R. Kreuser (ED) Published by Fishing News (Books) Ltd. London.
Malawat. S.. A. Cholik dan G. Purwanto. 1994. Status Perikanan Cucut di Maluku Tengah. Jumal Penelitian Perikanan Lout No.95: 61-71. Balal Penelitian Perikanan Laut Badan Penelitian dan Pengembangan Pertanian. Depariemen Pertanion, Jakarta.
Martosubroto, P. dan N. Naamin. 1985. Sumberdaya Perikanan dan Industri Tepung lkan. Prosiding Rapat Teknis Tepung lkan. Pusat Penelitian dan Pengembangan Pertanian. Badan Penelitian dan Pengembangan Pertanian. Departemen Pertanion, Jakorta.
Muchtodi, D. 1989. Evaluasi Nilai Giz Pangan. Departemen Pendidikan dan Kebudayaan. Direktorat Jenderal Pendidikan Tinggi. PAU Pangan dan Givi.
Priono, B., Suparno, Y. Sudrajat dan N. Hak. 1984. Perlakuan Fisis dan Khemis untuk Mengurangi Kandungan Urea dalam Daging Cucut, Laporan Penelitian Teknologi Perikanan No. 35 . Balai Penelitian Teknologi Perikanan Jakarta.
Saleh, M., D. Erlina, A. Sari dan N. Hak 1986. Mendapatkan Cara Pengolahan Tepung likan. 2. Pengaruh Mutu Bahan Mentah Ierhadap Mutu dan Daya Awet Tepung lkan. Jurnal Penelitian Pasca Panen Perikanan, No. $55: 7-16$. Balai Penelitian dan Pengembangan Pertanian, Jakarta.
Shahidi. F. 1994. Seafood Proteins and Preparation of Protein Concentrates. In : Seafoods: Chemistry, Processing Technology and Quality. F. Shahidi and J. R.Botta (ED). Blackie Academic and Professional. Chapman and Hail. London
Syarief R. dan H. Haiid. 1993. Teknologil Penyimpanan Pangan. Penerbit Arcañ. Jakarta.
Vendevilie, P. 1980. Tropical Shrimp Fisheries. Types of Fishing Geor Used and Their Selectivity. FAO Fisheries Tech. Paper, $261: 75 p$
Winarno, F.G. 1992. Kimia Pangan dan Gizi. PT.Gramedia Pustaka Ulama, Jakarta.
Yunizal, S. Nasran dan L. Mulyana. 1983. Pengclahan Daging Putih Cucut untuk Abon, Asap, dan Asin Kering . Laporan Penelition Teknoiogi Perikanan, Na.16. Balai Penelitian Perikanan Laut. Badan Penelitian dan Pengembangan Pertanian. Departemen Pertanian, Jakarta.

