INOVASI TEKNOLOGI PENGOLAHAN ASAP CAIR UNTUK SIIK CAKALANG (Katsuwonus pelamis) ASAR

Boetje Rumahrupute
Penelifi BPTP Maluku

Abstract

ABSTRAK Tujuan penelitian ini adalah untuk menentukan formula/resep terhadap umur simpan cakalang asar, secara penyuntikan dan perendaman dengan asap car 40% dalom lanutan kusing 10.5%, selama 10 menit. Untuk semua perlakuan, stk cakalong dipanaskan dalam oven, didinginkan pada suhu kamar, diberi wadah stirofoam, dikemas dengan plastik "saran" dan disimpan pada suhu kamar. Stik cakalang segar mempunyai Kadar Air 70.2 \%: TVB 19.6 mg N \%; pH 6.5; dan gel Elektroforesis protein 6 pifa. Hasil penelitian menunjukkan bahwa perlakuan perendaman dengan asap cair 40% daiam larutan kuring dapat memperpanjang umur simpan sampai sembian hari, sedangkan periakuan penyuntikan hanya enam hari. Perlakuan penyuntikan dan perendaman dengan larutan kuring hanya mempunyai umur simpon tiga hari. Perlakuan penyuntikan dan perendaman dengan asap cair dalam larutan kuring maupun dengan laruton kuring masing-masing mempunyai Kadar Air 54,1 \%; $38,2 \% ; 65,3 \%, 69.7 \%$; TVB 35.2 mg N \% 19.8 mg N \%; $49.0 \mathrm{mg} \mathrm{N} \% ; 42.8 \mathrm{mg}$ N \%: pH 7.1: $5.9 ; 7.7: 7,5 ;$ Fenol $0,2 \% ; 0.4 \%: 0,1 \% ; 0.1 \%$ pola Elektroforesis gel proten 4 pita, 6 pita. 4 pita, 4 pita dan kapang $1,2 \times 10^{5} ; 9,8 \times 10^{2} ; 1,2 \times 10^{81}, 5 \times 10^{\%}$. Aplikasi asap cair 40% dengan lama perendaman 10 menit dalam larutan kuring 10.5 \% merupakan inovasi teknologi pengolahan cakalang asar dan dapat dijadikan sebagai formula/resep karena dapat memper-panjang umur simpan sampai sembian hari dengan tetap mempertihatkan sifat-sifat sensoris yang menarik

Kata kunci: Asap cair formula/resep, cakalang asar

PENDAHULUAN

Lator Belakang

Pada era otonomi daerah seperti sekarang ini, perencana pembangunan perikanan akan sangat diwarnai oleh arah pembangunan ekonomi wilayah, yang diselaraskan dengan kondisi sumber daya alam, sumber daya manusia, sosial budaya serta peluang dalam tahap pembangunan yang sudah dicapai. Sejalan dengan konsep pembangunan perikanan yang berkelanjutan, maka pentingnya suatu formula/resep yang sesuai untuk menghasilkan ikan cakalang asar dengan daya awet yang panjang sebagai produk unggulan spesifik Maluku. dengan tetap mempertahankan sifat-siiat aslinya. Hal ini didasarkar: pada pertimbangan bahwa ketersediaan dan kapabilitas sumberdaya (alam, modal dan manusia) untuk menghasikan dan memasarkannya. Di sisi lain dalam tatanan pasar bebas saat ini, baik ditingkat pasar local, nasional maupun global hanya komoditas-komoditas yang diusahokan secara efisien dari sisi teknologi dan sosial ekonomi serta memiliki keunggulan komparatif dan kompetitif yang akan mampu bersaing secara berkelanjutan dengan komoditas yang sama yang dihasilkan oleh wilayah lain.

Proses pengasaran ikan cakalang yang cillakukan di Maluku selama ini mempunyai kelemahan antara lain dilakukan ditempat terbuka, membutuhkan waktu pengasaran kurang lebih delapan jam. pemakaian bahan baker (kayu atau tempurung kelapa) cukup banyak, prosesnya sulit dikendalikan serta kurangnya perhatian terhadap sanitasi dan higienes. Menurut Gurbatov et al (1971) dan Maga (1987), beberapa kelemahan pengasapan tradisional antara lain cita rasa dan konsentrasi konsatituen asap fidak seragam, waktu dan suthu yang tidak sama, sehingga produk yang dihasilkan tidak seragam serta kemungkinan terbentuknya senyawa hidrokarbon aromatic polisiklik (benzo(\&)piren yang bersifat karsinogenik.

Dalam upaya perbaikan pengolohan cakalang asar telah dilakukan beberapa penelitian antara lain dengan perekayasaan alat pengasar (Setiabudi at al, 1982. Syarief at al. 1983). Ditinjau dari sisi pengasaran maupun pengolahannya terlihat bahwa cakalang asar merupakan produk olahan yang utama bagi masyarakat Maluku. Dengan intensifnya kegiatan produksi maupun kansumsi produk tersebut dipertukan suatu teknologi yang dapat menghasikan ikan cakalang asar dengan umur simpan yang lama dengan tetap mempertahankan sifat-sifat khas ikan cakalang asar dan sifat sensoris yang menarik sehingga dapat dipasarkan di luar daerah Maluku.

Dasar Pertimbangan

Cakaiang asar merupakan produk olahan yang utama bagi masyarakat Maluku. Dengan intensifnya kegiatan produksi maupun konsumsi produk tersebut dipertukan suatu inovasi teknologi yang dapat menghasilkan ikan cakalang asar dengan umur simpan yang panjang dengan tetap mempertahankan sifat-sifat khas ikan cakalang asar dan sifat sensoris sehingga dapat dipasarkan di luar daerah Maluku.

Salah satu upaya peningkatan daya awet dan perpanjangna umur simpan cakalang asar adalah dengan menggunakan asap cair. Menurut Eklund (1982), asap car lebih mudah diaplikasikan karena konsentrasinya dapat dikontrol sehingga dapat memberikan cita rasa dan warna yang seragam . Selanjutnya dikatakan bahwa asap cair telah disetujui oleh banyak negara untuk digunakan pada pongan dan sekarang ini basnyak digunakan calam produk-produk daging lunak, Selain itu asap cair tidak menuniukan karsinogenik atou sifat-sifat toksit. Hal ini memperkuat pernyataan Hollenbeck (1978) yang menyatakan bahwa asop cair mempunyai sifat antibakterial, lebih mudah diaplikasikan dan lebih aman dari asap konvensional karena fraksi tar yang mengandung hidrikarbon polisikilk aromatik telah dipischkan, sehingga produk asap cair bebas polutan dan karsinogen. Menurut Yulistiani (1997), asap cair yang berasal dari hasil pirolisis tempurung kelapa mempunyai kemampuan penghambatan terhadap pertumbuhan bakteri patogen.

Dari hosil penelitian pendahuluan terhadap penggunaan konsentrasi asap cair. $10 \%, 20$ dan 40% dengan lama perendaman 5 menit, 10 menit dan 15 menit dalam larutan kuring 10.5%, diperoleh asap cair 40 \% dengan lama perendaman 10 menit menghasikan slik cakalang asar yang disukai panelis karena memberikan wama coklat, agak berbau asap dan tekstur agak keras

Penggunaan asap cair sebagi formula/resep pengasaran ikan cakalang asar mempunyai peluang untuk dikembangkan di Maluku, karena mudah diaplikasikan, mempunyal ketersediaan bahan bo' u yang melimpah serta melindungi konsumen dari bahayg karsinogenik yang biasanya torbentuk pada metode pengasapan tradisional.

Perkkraan Manfact/Dampak

Aplikasi asap cair pada pengolahan cakalang asar akan memberikan manfaat yang berarti, yakni berupa:

- Memperpanjang umur simpan dan mempertahankan sifat-sifat sensori ikan cakalang asar.
- Merupakan formula/resep yang dipakai dalam sistim usaha pengalahan ikan cokalang asar spesifik lokasi.
- Hasil olahannya dapat dipasarkan di luar daerah Maluku.
- Pendapatan nelayan meningkat

Dengan demikian telah dilakukan penelition Pengembangan Cakaiang Asar Dalam Bentuk Stik Dengan Asap Cair.

Tujuan penelitan ini adalah untuk mengetahui aplikosi asap cair terhodap umur simpan stik cokalang asor

BAHAN DAN MEIODE

Bahan

Bahan utama yang digunakan dalam penelitian ini adalah ikan cakalang (Katsuwonus pelamis) yang diperoleh dari hasil fangkapan nelayan yang masih segar demgan nilai TVB $19,6 \mathrm{mg} \mathrm{N}$ \%.

Bahan tambahen yang digunakan adalah asap cair yang berasal dari hasil pirclisis tempurung kelapa pada suhu. 400 oC yang diperoleh dañ Fokultas Teknologi Pertanian Unipersitos Gadjah Mada Yogyakarta.

Bahan pengemas yang digunakan adalah plastik "saran" dengan wadah stirofoam, sedangkan pemanasannya menggunakan oven bebas asap

Metode Penelitian
 Aplikasi Asap Calr

lkan cakalang yang telah dipotong melintang dan dibogi menjadi empat bagian. Satu bagian disuntik dan bogian lainnya direndam selama 10 menit masing-masing dengan asap cair 40% dalam larutan kuring $10,5 \%$. Setelah selesai disuntik dan direndam, ditiriskan selama 20 menit. Kemudian diatur di atas rak-rak supaya merata dalam oven dan dipanaskan pada suhu $40^{\circ} \mathrm{C}$ pada satu jam periama, suhu $80^{\circ} \mathrm{C}$ pada enam jam berikutnya dan berakhir pada suhu $40^{\circ} \mathrm{C}$ pada satu jam terakhir. Setelah stik cakalang sudah dingin pada suhu kamar, aliberi wadah stirofoam, dikemas dengan plastik "saran" dan disimpan pada suhu kamar dan dianalisis selama sembilan hari penyimpanan ($28^{\circ} \mathrm{C}$) dengan interval pengujian tiga hari.

- Kandungan fenol dengan metode Sunter et al (1989) dalam Wahyuningtyas (1997)
- Perubahan protein (Elektroforesisi) dengan metode Laemili (1970)
- Total kapang dengan metode Pitt \& Hocking (1985)
b. Organolepfik

Pengamatan dilakukan terhadap paramefer subjektif (warna, bau, rasa dan tekstur dengan skor tiga untuk warna, skor lima untuk bau dan rasa serta skor tujuh untuk tekstur. Analisis statistik dilakukan dengan menggunkan rancangan acak lengkap pola faktorial dengan dua kali uakangan. Data dianalisis dengan sidik ragam (Anova) cian dilanjutkan dengan uji beda nyata jujur (BNJ) menurut Steel \& Torie (1981).

HASIL DAN PEMBAHASAN

Dari hasil analsis stafistik terhadap penggunaan konsentrasu asap cair $13 \% .20 \%$ dan 40% dengan lama perendaman 5 menit, 10 menit dan 15 menit dalam larutan kuring 10.5% diperoleh bahwa asap cair 40 \% dengan lama perendaman 10 menit dalam larutan kuring 10.5% merupakan inovasi teknologi pengolahan cakalang asar karena dapat memperpanjang umur simpan sámpai akhir penyimpárián (sembilan hari), mempunyai sifat sensoris; warna cokjat, bau dan rasa asap tajam serta tektur agak keras (Gambar 1a, 1b, ic dan 1d) dengan kadar air 38,14 \%, TVB $29,77 \mathrm{mg} \mathrm{N} \%, \mathrm{pH} 5,41$, pola protein tidak berubah (enam pita) dan kapang $8,3 \times 10^{2}$ Ini artinya kadar air harus diperitahankan atara $50-60 \%$ sehingga dapat menghasilkan tektur yang sesuai dengan sitat-sifat assinya. Kenyataan inl menunjukkan bahwa senyawa-senyawa kimia dalam asap cair dapat memberikan kontribusi lerhadap pembentukan warna, bau, rasa dan tekstur. Menurut Girard (1992), fenol dalam produk asapan bepperan dalam membentuk wama dan cita rasa, karena senyawa-senyawa fenolat tertentu seperti guaiakol. 4 -metil guaiakol, 2,6 -dimetoksi fenol dan seringol menentukan cita rasa dari bahan pangan yang diasap. sehingga guaiakol akan memberikan rasa asap dan seringol membentuk aroma asap.

Dani hasil analisis statistik diketahui bahwa cara aplikasi penyuntikan, perendaman waktu penyimpanan dan kombinasi cara aplikasi berpengaruh nyata $\{P>0.05$) terhadap karakteristik kimia dan mikrobiologis stik cakalang asar (Tabel 1).

Selama penyimpanan pada suhu kamar produk yang diolah melalui perendaman dengan asap cair dalam larutan kuring lebih efektif urituk menghamioat laju peningkatan kadar air. TVB, pH dan total kapang, juga dapat memperkecil kehilongon fenol, serta dapat mempertahankan sub unit protein. dibandingkan dengan cara aplikasi lain. Hal ini diduga bahwa penyerapan senyawa-senyawa kimia dalam asap cair dari permukaan stik cakalang selama 10 menit merata penyebarannya ke dalam daging ikan sehingga dapat menghambat pertumbuhan mikroba dibandingkan dengan penyebaran dari dalam daging ke permukaan seperti yang dilakukan dengan cara penyuntikan. Menurut Eklund et al (1982), asap cair yang dikombinasikan dengan NaCl efektif menghambat pertumbuhan dan produkasi toksin oleh Clostridium botulinum tipe A dan B pada proses pengasapan panas "white fish". "chub" dan chup yang disimpan pada suhu $25^{\circ} \mathrm{C}$ selama $7-14$ hari.

Pola peningkatan kadar air yang terlalu cepat tidak diinginkan pada produk ppangan olahan. karena kadar air yang tinggi dapat climanfaatkan sebagai media tumbuh oleh bakteri dan kapang untuk berkembang. Menurut Witigna (1973), faktor yang sangat besar pengaruhnya terhadap daya tahan suatu produk pangan hasil olahan adalah kadar air. Makin tinggi kadar air semakin cepat mikroba berkembang dengan baik sehingga menyebabkan proses kemunduran daya awet akan berlangsung dengan cepat dan sebaliknya.

Wakdu penyimpanan (hari)

Suntuk Irt karing
ESuntik asap cair Irt karing
ERendam Irt kuring
ERendam asapcairlot kuring

Buntuk Irt kuring Suntik asap cair Irt kuring ERendan Irt karing © Rendan asap cair Irt kuring

Skor bau

-Suntuk Irt kuriag

-Suntik asap cairirt kuring
回Rendam Irtkariag

Readam asap cair Int karian

Skor tekstur

- Rendam Irt kuring
Rendam asap cair Irt kering
- Suntik asap eair irt kariag
- Suntik asap eair irt kariag

Gambar la dan 1b. Perbedaan daya awet sensoris terhadap rupa,bau, rasa dan tekstur cakalang asar
Tabel 1. Komposisi kimia cakalang asar selama penyimpanan suhu kamar

Aplikasi Perlakuon	Aplikasi larutan	Woktu penyimpanan (hari)	Parometer					
			K.Ar (\%)	TVB (mg N \%)	pH	Fenol (\%)	Protein (pita)	Kapang (log)
Penyuntikan	Kuring	0	46.9	25.2	6.5	0.6	6.0	3.8
		3	51.7	31.6	7.0	0.4	3.0	4.7
		6	60.0	46.4	7.1	0.2	4.0	6.6
		9	65.3	49.0	7.5	0.1	4.0	8.6
	Asap cair dalom larutan kuing	0	40.0	19.8	6.2	0.9	6.0	1.0
		3	49.1	21.8	6.3	0.8	6.0	3.0
		6	51.2	26.9	6.4	0.3	6.0	4.6
		9	54.1	35.2	7.1	0.2	4.0	5.1
Perendaman	Kuring	0	49.5	26.4	5.2	0.7	4.0	3.0
		3	53.6	30.1	6.9	0.4	4.0	4.0
		6	62.5	38.0	6.9	0.2	4.0	5.8
		9	69.7	42.9	7.7	0.1	4.0	72
	Asap cair dalam farutan kuving				5.1	1.1	6.0	1.0
		3	34.6	13.2	5.4	0.7	6.0	1.5
		6	35.1	16.4	5.9	0.4	6.0	2.1
		9	38.1	19.8	5.9	0.4	6.0	3.0

Peningkatan kandungan TVB diduga akibat basa-basa menguap yang dihasilkanıdari penguralan prolein oleh aktivitos mikroba yang mengarah pada proses pembusukan. Menurut James (1978), proses penguraian protein dan' derivatnya oleh mikroba selama penyimpanan akan menghasilikan basa-basa menguap seperti amonia, trimethyl amina dan hidrogen sulfida. Penggunaan asap coir-dalam larutan kuring dengan cara perendamon pada pengolahan stik ckalang asar selain memberikan cita rasa yang khos, pembentukan warna dap sebagai pengawet. juga memberikan kontribus tertiadap perubahan protein meleui kondisi pH yang terbentuk, perubahan pH ditentukan oleh kondisi-ingkungan. Ray \& Daescel (1993) berpendapat bahwa pH lingkungan yang rendah dapat menyebabkan denaturasi enzim dan ketidak stabilon bakteri sehingga menghambat pertumbuhan dan menurunkan daya hidup sel bakteri. Menurut Pearson \& Tauber (1984), asap dapat mengawetkan karena adanya aksi anti bokteri dari senyawa-senyawa fenol, asam asetat dan formaidehid yang terkandung didalamnya. Dengan demikian penggunaan asap cair 40% dengan lamam 10 menit dapat memperpanjang umur simpan sampai sembilan hari dan memperihatkan sifot sensoris; warna coklat, bau dan roso asap tajam serta tektur agak keros yang masih diterima panells.

KESIMPILAN DAN SARAN

1. Aplikasi osap cair 40% dengan lama perendaman 10 menit dalam lanutan kuring 10.5% merupakan inovasi teknologi pengolahan cakalang asor dan dapat djiadikan sebagal formula/resep karena dapat memperpanjang umur simpan sampai sembilan hari dengan tetap memperilhatkan sifat-sifat sensoris yang menarik
2. Asap cair mempunyai peluang untuk dikembangkan di Maluku, karena mudah diaplikasikan serta ketersediaan bahan baku yang melimpah
3. Penggunaan asap cair perlu disosialisasikan kepada masyarakat Maluku khususnya kepada nelayan pengolah dan konsumen cakalang asar.

(rion) momogmivneq uttow
 DAFTAR PUSTAKA
 (hort) moridginiyneq ublow
 nn4aratimexera

Eklund, M.W., G.A. Peroy, R. Paronjpye., M.E. Peterson and F.M. Teeny. 1982, Inihibitor of Clostricilum Botulinum Types A and B Toxin Production by Liquid Smoke an NoCl in Hot-Process Smoke-Falavoriedi Fishis. J. of Food Prot. 45(IO) : 925-941
Girard. J.P 1992. Technology of Meat and Meat Products. Elis Horwood. New York: 165-201
Gurbatov, V.M. N.N. Krylova. V.P. Volovinskaya. YU. N. Lyaskovskaya., K.L. Bazorova., R.I Khlamova and G. Ya. Yakovleva. 1971. Liquid Smoke for Use in Cured Meats. Food Tech. 25 (1). 71 - 77
Haseguwa, H, 1987. Laboratory Manual on Analytical Methods and Procedures of Fish Products. Marina Research Dep. South East Asean Fisheries Development Center. Singapure.
Hollenbeck, C.M. 1978. Summaries of Alditional Paper on Smoke Curing. The Symposlum Smoke Curing-Advances in Theory of Food Tech. Dallas. Tex. June 4-7,1978
James, M.J. 1978. Modern Food Mícroblology. Second Edition van Nostrand Reinhold. Cornpany New York.
Laemit. U.K. 1970. Cleavage of structural protein during assembly of the head of bocterphage T4 Nature 227: 680-685 Maga. J.A. 1987. Smoke in Food Processing. CRS Press.Inc. Boca Raton. Florida. 154 p.
Pearson. A.M and Touber. F.W. 1984. Processed Metas. Second Edition. Smoking. Avi Publishing Company Inc. Westport. Connecticut. 69-85.
Pitt, 1.1 andHocking, A.D. 1985. Fungi and Food Spoilage. Acadernia Press. Australia.
Ray, 3 and M. Doeschel. 1993. Food Biopreservatives of Microbial Origin. CRC Press. Boca-Raton 103-132.
Setiabudi, E., F. Syarief dan D. Suryanto. 1982. Introduksi Prototipe Alat Pengasar lkan. Laporan Penelitian Teknologi Perikanan. Jakarta. 16: 17-24
Syarief, F., S. Bustaman.. D. Suryanto dan B. Rumahrupute. 1983. Peningkatan Teknik Pengolahan Cakalang Asar dl Ambon. Laporan Penelitian Teknologi Perikanan. Jakarta. 21:21-28
Steel, R.U.G and Torrle, J.H. 1981. Principles and Procedures of Statistic a Biometrical Aproach, 2nd Edition MCGrow. Kogahusha Ltd. Tokyo 633 pp
Wahyuningtyas, R. 1997. Pemanfaatan Kulit Buah Kakoo dan Kopi untuk Pembuatan Asap Cair dalam Aplikasinya pada Doging. Skripsi Jurusan Teknologi Pengolahan Hasil Pertanian. Fakultas Teknology Pertanian UGM Yogyakarta.
Witgna, F. 1973. Pengaruh Waktu Fengasapan serta Pengaruh Natrium Benzoat terhadap Daya awot Bandeng Asap selama Penyimpanan, Fakulfas Mekanisasi dan Teknologi Perikanan, IPB Bogor.
Yulistiani, R. 1997. Kemampuan Penghambatan Asap Cair Terhadap Pertumbuhan Bakteri Patogen dan Perusak pada Lioah Sopi. Tesis $\$ 2$ Program Studi ilmu dan Teknologi Pangan Program Pasca Sarjana UGM Yogyakaria

