Teknologi Pengendalian Hama Lalat Buah

Penulis:
Prof. Dr. Ahsol Hasyim, M.S.
Dr. Liferdi Lukman, M.Si.
Ir. Wiwin Setiawati, M.S.
TEKNOLOGI PENGENDALIAN
HAMA LALAT BUAH
Teknologi Pengendalian
Hama Lalat Buah

Penulis:
Prof. Dr. Ahsol Hasyim, M.S.
Dr. Liferdi Lukman, M.Si.
Ir. Wiwin Setiawati, M.S.
Teknologi Pengendalian Hama Lalat Buah

@2020 IAARD PRESS

Hak cipta dilindungi Undang-undang
@IAARD PRESS

Katalog dalam terbitan

HASYIM, Ahsol
x, 88 hlm.: ill.; 21 cm

1. Lalat Buah 2. Pengendalian
I. Judul II. Lukman, Liferdi III. Setiawati, Wiwin

632.75

Diterbitkan oleh:
IAARD PRESS
Badan Penelitian dan Pengembangan Pertanian
Jln. Ragunan No. 29, Pasar Minggu, Jakarta 12540
Email: iaardpress@litbang.pertanian.go.id
Anggota IKAPI No. 445/DKI/2012

Pencetakan buku ini dibiayai oleh:
DIPA Pusat Perpustakaan dan Penyebaran Teknologi Pertanian
Tahun Anggaran 2020
KATA PENGANTAR

Lalat buah merupakan kelompok serangga hama yang banyak menimbulkan kerusakan pada komoditas buah-buahan dan sayuran buah. Serangan lalat buah, selain menyebabkan kehilangan hasil panen, juga berimplikasi terhadap akses pasar komoditas buah-buahan Indonesia di pasar global. Karena serangan spesies lalat buah tertentu, negara pengimpor dapat mengembargo buah-buahan yang kita ekspor atau memaksa produsen untuk memberi perlakuan khusus sehingga menambah pengeluaran.

Di seluruh dunia terdapat 932 spesies lalat buah (suku Dacini) dan sekitar 10% merupakan hama buah-buahan dan sayuran komersial. Di Indonesia terdapat sekitar 90 spesies lalat buah, namun hanya 7 spesies yang tergolong hama penting. Pengenalan terhadap ciri khas, tumbuhan inang, dan biologi dari ketujuh spesies tersebut disajikan secara rinci di dalam buku ini.

Sesuai dengan judulnya, buku ini diyakini sangat bermanfaat bagi para petugas lapangan dan pelaku perlindungan tanaman hortikultura dalam upaya mengendalikan serangan lalat buah secara efektif, efisien, dan aman terhadap lingkungan.

Bogor, Juli 2020
Profesor Ilmu Serangga
Institut Pertanian Bogor

Prof. Dr. Aunu Rauf, M.Sc.

Lalat buah dapat menyerang banyak tanaman hortikultura terutama buah-buahan dan sayuran sehingga sulit sekali untuk dikendalikan. Pada cabai, serangan lalat buah, produksi dan mutu buah menjadi rendah, bahkan tidak jarang mengakibatkan gagal panen karena buah menjadi busuk dan berjatuhan ke tanah.

Buku ini berisi tentang pengenalan lalat buah dan berbagai teknik pemantauan dan pengendaliannya dengan disertai foto berwarna. Di dalam buku ini juga diuraikan berbagai teknik penanganan pascapanen buah-buahan, hasil-hasil penelitian tentang teknik monitoring, strategi kebijakan pengendalian hama terpadu (PHT), dan teknologi pengendalian terpadu hama lalat buah. Dari penelitian-penelitian tersebut dapat disimpulkan bahwa teknologi PHT lalat buah seraca tekni
mampu menekan serangan lalat buah dan secara ekonomi menguntungkan petani. Oleh karena itu dengan terbitnya buku ini diharapkan teknologi pengendalian lalat buah dapat tersosialisasikan dan diterapkan oleh petani dan praktisi pertanian, khususnya petani buah-buahan dan sayur-sayuran.

Lembang, Juli 2020

Penulis
DAFTAR ISI

KATA PENGANTAR .. v
PRAKATA .. vii
DAFTAR ISI .. viii
BAB 1. PENDAHULUAN ... 1
BAB 2. TAKSONOMI DAN BIOEKOLOGI LALAT BUAH DI INDONESIA........................... 5
 2.1. Taksonomi dan Morfologi .. 8
 2.2. Faktor yang Memengaruhi Kehidupan Lalat Buah 11
 2.3. Jenis-jenis Lalat Buah Penting di Indonesia ... 13
BAB 3. TEKNIK MONITORING, STRATEGI, DAN KEBIJAKAN PHT 31
 3.1. Pengertian Monitoring ... 31
 3.2. Tujuan Monitoring ... 31
 3.3. Prosedur Monitoring .. 31
 3.4. Metode Monitoring ... 32
 3.5. Teknik Penggunaan Perangkap ... 33
 3.6. Kebijakan ... 37
 3.7. Strategi .. 38
BAB 4. KOMPONEN TEKNOLOGI PHT LALAT BUAH 41
 4.1. Penanganan Prapanen .. 41
 4.2. Penanganan Pascapanen ... 59
BAB 5. STRATEGI KEBIJAKAN PENGUATAN KARANTINA 63
DAFTAR PUSTAKA ... 67
INDEKS ... 79
GLOSARIUM .. 81
TENTANG PENULIS .. 85
BAB 1. PENDAHULUAN

Lalat buah memang hantu yang menakutkan bagi pekebun hortikultura. Secara ekonomis, beberapa spesies lalat buah merupakan hama penting yang berasosiasi dengan berbagai buah-buahan dan sayuran tropika.

Serangan lalat buah dapat menyebabkan kerusakan langsung terhadap 150 spesies tanaman buah dan sayuran di daerah tropis dan subtropis (Alyoklin et al. 2000; Bateman 1972; Hafsi et al. 2016). Di Indonesia bagian barat, terdapat 89 spesies lalat buah yang termasuk jenis lokal (indigenous), tetapi hanya delapan spesies yang termasuk hama penting, yaitu Bactrocera...
albistrigata Meijere, B. dorsalis Hendel, B. carambolae Drew & Hancock, B. papayae Drew & Hancock, B. umbrosa Fabricius, B. caudata Fabricius dengan sinonim B. tau Walker, B. cucurbitae Coquillett, dan Dacus (Callantra) longicornis Wiedemann. Pengetahuan tentang jenis lalat buah endemis yang mempunyai potensi sebagai hama perlu dikuasai (Hardy 1983a).

Dalam upaya meningkatkan mutu buah-buahan dan sayuran, pengetahuan tentang taksonomi untuk mengenal jenis-jenis lalat buah dan habitatnya, serta teknologi pengendaliannya diperlukan bagi para petugas maupun pelaku perlindungan tanaman hortikultura agar pengendalian dapat dilakukan secara tepat dan efisien. Kemampuan untuk mengenal berbagai jenis lalat buah beserta tanaman inangnya sangat membantu upaya pengendalian hama tersebut.
Petani buah dan sayuran umumnya masih bergantung pada pestisida sintetis untuk mengendalikan lalat buah, padahal cara ini dapat mencemari lingkungan maupun produk tanaman yang dihasilkan. Oleh karena itu, ketersediaan teknologi pengendalian lalat buah yang ramah lingkungan tidak dapat ditawar lagi agar produk buah terhindar dari cemaran bahan kimia berbahaya, terutama pestisida. Selain ramah lingkungan, teknologi hendaknya juga efektif dan efisien mengendalikan hama serta mudah diterapkan oleh petani di lapangan (Hasyim et al. 2015). Teknologi pengendalian lalat buah yang ramah lingkungan meliputi pengendalian secara kultur teknis, fisik/mekanik, biologi, dan kimia (dapat digunakan sebagai alternatif terakhir).

Untuk mencegah penyebaran lalat buah antarnegara, berbagai peraturan internasional yang terkait dengan perdagangan produk pertanian telah disepakati. Hal ini mempunyai konsekuensi bagi Indonesia untuk mengikuti peraturan tersebut agar dapat berperan di pasar global. Penerapan Sanitary and Phytosanitary (SPS) menjadi keharusan untuk membuka peluang pemasaran produk hortikultura ke mancanegara. Untuk itu, keberadaan daftar jenis lalat buah (pest list) yang ditemukan di Indonesia berikut dengan spesimen awetan (voucher specimen) menjadi kebutuhan yang sangat penting sebagai salah satu kelengkapan dalam pemasaran produk pertanian di pasar global.
BAB 2.
TAKSONOMI DAN BIOEKOLOGI LALAT BUAH DI INDONESIA

Di Indonesia bagian barat, terdapat 89 spesies lalat buah yang termasuk jenis lokal (indigenous) tetapi hanya delapan jenis yang termasuk hama penting. Delapan jenis lalat buah tersebut yaitu Bactrocera albistrigata Meijere, B. dorsalis Hendel, B. carambolae Drew & Hancock, B. papayae Drew & Hancock, B. umbrosa Fabricius, B. caudata Fabricius, B. tau Walker, B. cucurbitae Coquillett, dan Dacus (Callantra) longicornis Wiedemann (Tabel 1).
Tabel 1. Jenis-jenis lalat buah penting di Indonesia, sinonim, nama umum, dan sebaran awetan spesimen Koleksi Referensi Spesimen Serangga/KRSS Bogor (Siwi 2004).

<table>
<thead>
<tr>
<th>Spesies</th>
<th>Sinonim/simpatrik</th>
<th>Nama umum</th>
<th>Inang</th>
<th>Sebaran/spe-simen awetan</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. carambolae</td>
<td>B. dorsalis kompleks</td>
<td>Carambola fruitfly, lalat buah belimbing</td>
<td>Belimbing, apel, kluwih</td>
<td>Indonesia, kecuali Papua</td>
</tr>
<tr>
<td>(Drew and Hancock)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. papayae</td>
<td>B. dorsalis kompleks</td>
<td></td>
<td>Bercamam jenis buah dan sayuran. Pada saat ini lalat buah yang paling ganas</td>
<td></td>
</tr>
<tr>
<td>B. dorsalis</td>
<td>B. ferrugineus B. conformis</td>
<td>Oriental fruit fly</td>
<td>Jeruk, aprikot, apel, pir, pepaya</td>
<td>Tersebar luas</td>
</tr>
<tr>
<td>(Hendel, 1912)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.(B.) albistrigata</td>
<td></td>
<td>Jambu biji, jambu air, jambu bol, nangka</td>
<td>Jawa, Sulawesi, dan Sumatera (White 1992)</td>
<td></td>
</tr>
<tr>
<td>(de Meijere)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.(Z.) cucurbitae</td>
<td></td>
<td>Melon fly</td>
<td>Melon, labu, mentimun, dan lebih dari 125 jenis tanaman famili Cucurbitaceae</td>
<td>Tersebar luas</td>
</tr>
<tr>
<td>Coquillett</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. tau</td>
<td>B. hageni B. nubilus B.(Z.) caudatus</td>
<td></td>
<td>Mentimun, ceri, dan tanaman famili</td>
<td>Jawa dan Sumatera (White 1992),</td>
</tr>
</tbody>
</table>
B. maculipennis

<table>
<thead>
<tr>
<th>Spesies</th>
<th>Genus</th>
<th>Keluarga</th>
<th>Daerah</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. umbrosus Fabricius</td>
<td>B. fasciatipennis</td>
<td>Cucurbitaceae</td>
<td>belum ada di</td>
</tr>
<tr>
<td>D. diffusus</td>
<td></td>
<td></td>
<td>Papua</td>
</tr>
<tr>
<td>D. fascipennis (Froggatt)</td>
<td></td>
<td></td>
<td>Kluwih, nangka,</td>
</tr>
<tr>
<td>D. frenchi</td>
<td></td>
<td></td>
<td>cempedak</td>
</tr>
<tr>
<td>S. umbrosa</td>
<td></td>
<td></td>
<td>Tersebar luas</td>
</tr>
</tbody>
</table>

Sumber: Siwi (2004)

B. papayae dan B. carambolae termasuk kelompok dorsalis spesies kompleks. Pada saat ini juga telah diketahui bahwa B. dorsalis merupakan spesies kompleks karena ditemukan banyak sibling spesies. Sejumlah spesies merupakan spesies yang banyak merugikan tanaman buah dan sayuran di Asia dan Pasifik, dan B. papayae merupakan spesies yang paling merusak.

Spesies yang diidentifikasi sebelumnya sebagai B. pedestris (Bezzi) dari Indonesia (Kalshoven 1981) merupakan kesalahan identifikasi dari B. Papayae. Hal itu karena B. pedestris sangat jarang ditemukan di Indonesia dan spesies itu hanya dilaporkan terdapat di Filipina (White & Hancock 1997).

B. dorsalis (Hendel, 1912) terkenal dengan nama lalat buah oriental, merupakan sinonim dari B. ferrugineus dan B. conformis. B. umbrosa merupakan sinonim dari B. umbrosus Fabricius. Sementara tiga spesies yang dilaporkan sebagai B. caudatus, B.
maculipennis, dan B. nubilus merupakan sinonim dari B. tau (White & Hancock CABI 1997).

2.1. Taksonomi dan Morfologi

Lalat buah yang tersebar di daerah tropika dan subtropika termasuk ke dalam famili Tephritidae dan subfamili Dacinae. Secara morfologis, jenis lalat buah yang secara ekonomis penting dibagi dalam dua kategori utama (Hardy 1975), yaitu:

1. Genera *Bactrocera* dan *Dacus* (suku Dacini), terdiri atas beberapa spesies. Suku Dacini oleh berbagai penulis dipecah lagi menjadi beberapa subgenera, tetapi umumnya dapat dimasukkan ke dalam tiga subgenera, yaitu:
 - *Dacus* (*Bactrocera*), 7 spesies
 - *Dacus* (*Strumeta*), 6 spesies
 - *Dacus* (*Zeugodacus*), 1 spesies

2. Genera *Anastrepha*, *Ceratitis*, dan *Rhagoletis*.

A. Morfologi Dewasa

Morfologi lalat buah secara garis besar terdiri atas sayap, kepala, toraks, dan abdomen. Anatomi lalat buah imago secara umum dan terminologi penting untuk orientasi taksonomi ditampilkan dalam Gambar 1.
a = anterior; ad = anterodorsal; av = anteroventral; d = dorsal; p = posterior; pd = posterodorsal; pv = posteroventral; v = ventral; c = costa; A = anal; cu = cubitus; M = median; R = radius; r-m = vena melintang; m-m = vena melintang

B. Morfologi Pradewasa

Gambar 2. Terminologi penting untuk identifikasi lalat buah pradewasa (larva instar 3); 1. spirakel bagian anterior; 2. kait mulut; 3. gigi; 4. alat perayap; 5. lubang anal; 6. spirakel bagian posterior (Sumber: Siwi 2004)

C. Biologi Lalat Buah

Perkembangan lalat buah dari telur sampai imago melalui empat stadium, yaitu telur, larva, pupa, dan imago.

1. Telur

Telur berbentuk bulat panjang berwarna putih dengan ukuran panjang 1–1,2 mm dan lebar kurang lebih 0,21 mm. Telur diletakkan berkelompok di bawah permukaan kulit buah. Lama stadium telur kurang lebih 3 hari.

2. Larva

Larva terdiri atas tiga instar, yaitu instar 1, 2, dan 3. Larva lalat buah mangga instar 1 memiliki panjang tubuh 1–4 mm, instar 2 berkisar 4–7 mm, dan instar 3 panjangnya 7–9 mm. Lama stadium larva berkisar 5–9 hari dengan rerata 7 hari (Sodiq 1993). Warna tubuh larva putih sampai kecokelatan.
3. Pupa

Pupa merupakan stadium yang tidak aktif. Setelah mencapai instar 3, larva akan keluar dari buah lewat lubang kecil dan berwarna hitam. Setelah berada di permukaan kulit buah, larva akan melentingkan tubuhnya dan jatuh ke tanah. Di dalam tanah, larva akan mengerutkan badannya dan membentuk pupa. Pupa berwarna kuning kecokelatan dengan lama stadium 8–12 hari dan rerata 10 hari (Sodiq 1993). Pupa berukuran panjang 4,80 mm dan lebar kurang lebih 2 mm.

4. Imago

2.2. Faktor yang Memengaruhi Kehidupan Lalat Buah

Kehidupan famili Tephritidae dipengaruhi oleh iklim, suhu, kelembapan, cahaya matahari, angin, tanaman inang, dan musuh alami. Iklim memengaruhi pemencaran, perkembangan, daya bertahan hidup, perilaku, reproduksi, dinamika populasi, dan ledakan hama (Ye et al. 2007; Sutanto et al. 2017).

A. Iklim

Iklim berpengaruh terhadap perilaku serangga hama, seperti perkawinan dan peletakan telur. Faktor iklim juga berpengaruh pada angka kelahiran, kematian, pertumbuhan populasi, dan penyebaran serangga (Ganie et al. 2013).
B. Suhu

C. Kelembapan Udara

Kelembapan udara berpengaruh terhadap keperidian lalat buah. Kelembapan yang rendah dapat menurunkan keperidian lalat buah dan meningkatkan mortalitas imago yang baru keluar dari pupa. Sementara kelembapan udara yang terlalu tinggi (95–100%) dapat mengurangi laju peletakan telur (Raghuvanshi et al. 2012).

Semakin tinggi kelembapan udara, stadium larva, pupa, dan imago semakin panjang. Kelembapan optimum bagi perkembangan lalat buah berkisar 70–80%. Lalat buah hidup baik pada kelembapan udara 62–90%.

D. Cahaya

Cahaya, intensitas cahaya, dan lama penyinaran dapat memengaruhi aktivitas lalat betina dalam makan, bertelur, dan kopulasi. Lalat aktif pada keadaan terang, yaitu pada siang hari, dan kawin pada intensitas cahaya rendah. Lalat betina yang diletakkan di tempat yang banyak mendapat cahaya lebih cepat dewasa maupun bertelur.

E. Pakan

Imago lalat buah biasanya makan nektar, embun madu, sekresi tanaman, buah busuk atau buah yang luka. Tingkat

2.3. Jenis-jenis Lalat Buah Penting di Indonesia

1. **B. carambolae** Drew & Hancock

Nama umum: lalat buah belimbing (*carambola fruit fly*)
Sinonim: *Bactrocera* sp. nr. *B. dosalis* (A); *B. conformis* Doleschall

a. Diagnosis dan Ciri Karakteristik

Diagnosis spesies B. carambolae dengan menggunakan ciri-ciri sayap, toraks, dan abdomen disajikan pada Gambar 3.

<table>
<thead>
<tr>
<th>Sayap</th>
<th>Toraks</th>
<th>Abdomen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gambar 3. Ciri-ciri sayap, toraks, dan abdomen Bactrocera carambolae (Sumber: Siwi 2004)

Buah yang terserang mudah dikenali dengan adanya bekas tusukan ovipositor lalat betina dan perubahan warna kulit buah di sekitar bekas tusukan. Buah juga membusuk dengan cepat. Untuk memeriksa larvanya, buah dibelah lalu larvanya diambil dan dipelihara sampai dewasa untuk identifikasi jenis imagonya.

b. Persebaran

c. Tumbuhan Inang

B. dorsalis menyerang berbagai jenis buah sebagai inangnya, termasuk pepaya (Ranganath et al. 1997) dan merupakan hama penting pada tanaman belimbing (Averrhoa carambola). B. dorsalis juga menyerang jambu air (Syzygium jambos) dan watery rose-apple (S. aqueum). Menurut Drew & Hancock (1994), tanaman inang lain yang terdapat di Asia Tenggara di antaranya adalah bilimbi (A. bilimbi), kluwih (Artocarpus altilis), cabai (Capsicum annuum), jambu biji (Psidium guajava), nangka (Artocarpus heterophyllus), Malay-apple (S. malaccense), mangga (Mangifera indica), tomat (Lycopersicon esculentum), almon tropis (Terminalia setappa), Artocarpus elasticus, dan Solanum ferox (White & Hancock 1997), serta inang liar luna nut (Lepisanthes fruticosa).

d. Biologi

Lalat buah betina menyelipkan telur-telurnya di bawah kulit buah belimbing. Larva hidup di dalam buah sampai tumbuh sempurna, sesudah itu jatuh dan masuk ke dalam tanah

Larva *B. carambolae* membuat lubang di dalam buah sehingga mempermudah masuknya bakteri dan fungi. Buah yang terinfeksi saat masih muda akan cepat masak dan biasanya kualitasnya kurang baik untuk dikonsumsi.

2. *B. papayae* Drew & Hancock

Nama umum: lalat buah pepaya (*papaya fruit fly*)
Sinonim: *Bactrocera conformis* Doleschall

B. conformis tidak terdapat di nomenklatur karena spesies ini merupakan sinonim dari *B. papayae*. Spesies yang diidentifikasi sebagai *B. pedestris* dari Indonesia dan Malaysia merupakan *B. papayae* karena *B. pedestris* sangat jarang ditemukan dan dilaporkan hanya terdapat di Filipina. Laporan tentang *B. dorsalis* dari Indonesia, Malaysia, dan Thailand bagian selatan merupakan kesalahan identifikasi dari spesies *B. papayae* yang sebelumnya telah diidentifikasi sebagai *sp. near B. dorsalis* (B).

a. Diagnosis dan Ciri Karakteristik

<table>
<thead>
<tr>
<th>Sayap</th>
<th>Toraks</th>
<th>Abdomen</th>
<th>Seluruh Tubuh</th>
</tr>
</thead>
</table>

b. Persebaran

c. Tumbuhan Inang

Pisang, mangga, dan pepaya merupakan inang yang baik bagi *B. papayae*. Inang lainnya di antaranya adalah rambutan dan manggis liar *Garcinia hombroniana* Pierre (Yong 1990).

3. *B. dorsalis* (Hendel, 1912)

Nama umum: lalat buah oriental
Sinonim: *B. ferrugineus; B. conformis*

kelompok *B. dorsalis* spesies kompleks, sehingga untuk identifikasi dimasukkan ke dalam *B. dorsalis* Hendel.

a. Diagnosis dan Ciri Karakteristik

Sayap hanya mempunyai noda pada garis *costa* dan *cubita* dan tidak mempunyai noda pada vena melintang. Terdapat dua rambut pada skutelum, mesonotum dengan tanda hitam, pita lateral kuning pada mesonotum memanjang ke dekat rambut supra-alar. Abdomen sebagian besar berwarna merah pucat (cokelat). Terdapat pita hitam melintang pada terga ke-2 dan ke-3, serta pita hitam sempit longitudinal membelah tengah-tengah terga ke-3 sampai ke-5. Panjang 4,5–4,7 mm (Gambar 5 dan 6).

![Gambar 5. Bactocera dorsalis betina (kiri) dan jantan (kanan) (Hendel 1912)](image)

<table>
<thead>
<tr>
<th>Sayap</th>
<th>Toraks</th>
<th>Abdomen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spesies B. dorsalis (Hendel, 1912) ciri karakteristiknya hampir sama dengan Dacus (Bactrocera) pedestris (Bezzi) sehingga kedua spesies tersebut hampir selalu mengalami kekeliruan identifikasi. Ciri yang membedakan dengan spesies B. dorsalis Hendel yaitu B. pedestris mempunyai daerah spirakel dan coxa depan berwarna hitam dan pita costa tidak memanjang ke bawah pada vena R2+3, kecuali pada pucuk. Femura berwarna kuning dan muka dengan dua spot hitam.

b. Persebaran

c. Tumbuhan Inang

d. Gejala

Buah yang terserang mudah dikenali dengan perubahan warna kulit di sekitar tanda sengatan. Larva yang berwarna putih kekuningan menggali lubang di dalam buah dan sering diikuti masuknya jamur atau bakteri sehingga buah membusuk dengan cepat. Bahkan buah yang terserang lalat buah berjatuh di tanah.

e. Biologi

4. *Bactrocera (Zeugodacus) tau* (Walker)

pula spesies *D. caudatus* yang dibiakkan dari buah mentimun telah divalidasi sebagai *B. (Z.) tau*.

a. Diagnosis dan Ciri Karakteristik

![Gambar 7. Bactrocera tau betina (kiri) dan jantan (kanan)](image)

<table>
<thead>
<tr>
<th>Sayap</th>
<th>Toraks</th>
<th>Abdomen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Larva instar 3 berukuran sedang, panjang 7,5–9,0 mm dan lebar 1,0–1,5 mm. Teknik molekuler seperti SDS-polyacrylamide gel electrophoresis dapat digunakan untuk mengidentifikasi larva dan membedakan spesies dalam genus Bactrocera (Liang et al. 1991).

b. Persebaran

c. Tumbuhan Inang

d. Gejala

Buah yang terserang dengan mudah dapat dikenali dari perubahan warna kulit buah di sekitar tanda sengatan dan juga buah menjadi cepat busuk.

e. Biologi

f. Kerugian Lingkungan dan Ekonomi

Larva *B. tau* membuat lubang pada kulit buah dan sayuran yang menjadi jalan masuk bakteri dan fungi. Serangga ini telah mengakibatkan kerusakan serius pada tanaman sayuran di China (Zhou *et al.* 1993).

5. *Bactrocera umbrosus* Fabricius

a. Diagnosis dan Ciri Karakteristik

Gambar 9. *Bactrocera umbrosus* betina (kiri) dan jantan (kanan)
b. Persebaran

c. Tumbuhan Inang

B. umbrosus menyerang tanaman nangka, kluwih, dan di daerah Lembang sebagian menyerang cabai.

6. *B. (Z) cucurbitae* (Coquillet)

Nama umum: lalat melon (*melon fly*)
Sinonim: *Chaetodacus cucurbitae* (Coquillet)

Spesimen lalat melon yang tersimpan di KRSS Bogor tercatat dengan label *Dacus cucurbitae* (Coquillet), *Strumeta cucurbitae* (Coquillet), dan *Zeugodacus cucurbitae* (Coquillet).

a. Diagnosis dan Ciri Karakteristik

Gambar 11. *Bactrocera cucurbitae* jantan (kiri) dan betina (kanan)
Sayap	Toraks	Abdomen
![Image](image1.png) | ![Image](image2.png) | ![Image](image3.png)

b. Persebaran

Di Indonesia, B. cucurbitae terdapat di Jawa, Kalimantan, Sulawesi, Sumatera, dan Papua. Sementara di mancanegara menyebar luas di Afrika, Asia, dan Pasifik.

c. Tumbuhan Inang

B. cucurbitae menjadi hama serius pada tanaman famili Cucurbitaceae. Menurut Weems (1964), spesies ini mempunyai inang lebih dari 125 tanaman keluarga Cucurbitaceae atau di luar famili itu. Namun, informasi tersebut hanya berdasarkan adanya lalat buah yang hinggap atau tertangkap dalam perangkap yang dipasang pada tanaman sekitarnya yang tidak termasuk inang utamanya.

Di Indonesia, spesies ini dapat ditemukan pada buah mentimun, labu, semangka, melon, tomat, cabai, dan beberapa jenis sayuran buah yang telah masak. Semangka dan melon dapat diinfeksi lalat buah pada stadium perkembangan buah awal, yakni pada saat ukuran buah baru 1,5 mm. Kerusakan berat kadang-kadang ditemukan pada semangka dan mentimun krai (bonteng suri). Spesies ini juga dapat menyerang buah tomat, cabai, dan sayuran buah lain (Kalshoven 1981).
d. Biologi

Telur B. cucurbitae dideskripsi secara rinci oleh Margaritis (1985). Bentuk telurnya hampir sama dengan telur spesies lalat buah lain. Warna telur putih kekuningan, panjang 0,8 mm, dan lebar 0,2 mm. Micropyle sedikit meruncing pada ujung anterior. Larva instar 3 panjangnya 9,0–11,0 mm dan lebar 1,0–2,0 mm. Pupa berwarna kuning kecokelatan. Panjang pupa 60–80% dari panjang larva dan imago (Gambar 13).

Gambar 13. Larva instar 1, 2, 3, bentuk pupa, dan imago lalat buah Bactrocera cucurbitae (Sumber: KRSS, Bogor; Siwi 2004).
7. **Bactrocera (Bactrocera) albistrigatus (de Meijere)**

Sinonim: *Dacus albistrigatus* de Meijere.

a. Diagnosis dan Ciri Karakteristik

Serangga jantan tertarik *cue lure*. Warna serangga didominasi hitam, dengan bercak pada kepala. Sayap dengan gambaran patron spesifik, hanya dengan satu bercak seperti asap (pita) melintang mencapai r-m dan m-m. Sel *costa* kedua penuh dengan duri-duri halus (*microtrichia*). *Scutum* memiliki garis lateral kuning, separuh *posterior postpronotal lobe* berwarna kuning (Gambar 10). *Bactrocera frauenfeldi* Schiner yang diidentifikasi dari Papua merupakan kesalahan identifikasi dari spesies ini (Hardy 1983).

<table>
<thead>
<tr>
<th>Sayap</th>
<th>Toraks</th>
<th>Abdomen</th>
<th>Seluruh Tubuh</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gambar 14. Ciri-ciri karakteristik imago jantan *Bactrocera albistrigatus* (de Meijere) (Sumber: Foto KRSS, Bogor; Siwi 2004)
b. Persebaran

c. Tumbuhan Inang

Gambar 15. Larva instar 1, 2, 3, bentuk pupa dan imago *Bactrocera albistrigata* (Sumber: Foto KRSS, Bogor; Siwi 2004)
BAB 3.
TEKNIK MONITORING, STRATEGI, DAN KEBIJAKAN PHT

3.1. Pengertian Monitoring

Monitoring merupakan kegiatan untuk melakukan penghitungan populasi relatif lalat buah dalam suatu unit area yang dilakukan secara kontinu dan periodik dalam jangka panjang.

3.2. Tujuan Monitoring

Kegiatan monitoring bertujuan untuk:
1) menginventarisasi jenis-jenis lalat buah;
2) mengetahui distribusi dan perkembangan populasi lalat buah;
3) mengetahui sejak dini kehadiran lalat buah di lapangan;
4) mengevaluasi keefektifan berbagai teknik pengendalian, khususnya teknik jantan mandul dalam pengendalian lalat buah.

3.3. Prosedur Monitoring

Tahapan monitoring adalah sebagai berikut:
1) menentukan situasi target (lokasi, jenis komoditas, dan luas areal);
2) merancang metode monitoring yang sesuai (penghitungan langsung, penggunaan perangkap);
3) mengevaluasi hasil monitoring.

3.4. Metode Monitoring

Pengambilan contoh untuk mengestimasi tingkat kerusakan pada buah dilakukan secara periodik dan kontinu untuk mengestimasi tingkat kerusakan buah akibat serangan lalat buah. Pengamatan dilakukan secara langsung (direct counting) dengan menghitung dan mempersentasekan jumlah buah yang terserang lalat buah terhadap seluruh buah yang diamati. Dalam kaitan ini, teknik pengambilan contoh yang representatif perlu dikembangkan untuk mendapatkan hasil penilaian kerusakan yang benar.

Untuk pengamatan di kebun seluas 1 hektare, penentuan contoh dilakukan secara acak pada lima titik yang terletak pada perpotongan diagonal luas kebun. Penentuan contoh tanaman untuk pengamatan kerusakan buah dilakukan secara acak dengan memetik buah dari pohon di empat penjuru mata angin.

Saat yang paling tepat untuk mengukur kerusakan pada buah ialah fase menjelang masak, karena serangan lalat buah pada buah masak paling tinggi dibandingkan dengan serangan pada stadium lainnya. Waktu pengambilan sampel buah, misalnya mangga, nangka, dan durian, dilakukan pada awal musim hujan. Buah dikupas, lalu diperiksa untuk mengetahui ada tidaknya serangan larva lalat buah. Pengukuran serangan lalat buah juga dapat dilakukan pada buah yang telah dipanen, asalkan diketahui lokasi pohon buah yang dipanen tersebut.

Sampel untuk pengamatan serangan lalat buah dapat diteruskan untuk pengamatan/pemantauan musuh alami yang bersifat endoparasit larva, yaitu dengan cara mengumpulkan
buah-buah yang terserang lalat buah, kemudian menyimpan buah tersebut dalam wadah plastik berisi pasir halus lalu ditutup dengan kain kasa. Parasit yang muncul yang sudah diketahui adalah dari jenis *Opius* sp. dan *Biosteres* sp. (Sarwono *et al.* 1993).

3.5. Teknik Penggunaan Perangkap

A. Jenis Perangkap

Perangkap yang banyak digunakan dalam penelitian dan pengendalian lalat buah di Indonesia adalah perangkap botol bekas air mineral karena mudah diterapkan oleh petani dan murah. Perangkap botol yang dimodifikasi salah satu sisinya dapat ditutup dan dibuka dengan mudah. Perangkap dilengkapi dengan atraktan yang selalu diperbarui sehingga dapat menarik lalat buah secara optimal selama pemasangan. Atraktan yang digunakan disesuaikan dengan spesies lalat buah yang akan dipantau. Cara menggunakankannya, atraktan diteteskan pada kapas atau kapas dicelupkan ke dalam atraktan secukupnya, selanjutnya diletakkan di bagian tengah botol. Atraktan diganti setiap 2–3 minggu sekali.
B. Jumlah dan Pemasangan Perangkap

C. Ketinggian Pemasangan Perangkap

Peletakan perangkap di kebun perlu dipertimbangkan secara sekasama guna mengefektifkan hasil penangkapan lalat buah. Jenis, umur, dan tinggi tanaman perlu diperhatikan dalam penentuan ketinggian pemasangan perangkap. Secara umum, ketinggian pemasangan perangkap perlu disesuaikan dengan tinggi kanopi tanaman, yakni area tempat lalat buah umumnya beraktivitas.

Ketinggian perangkap yang paling banyak menangkap lalat buah ialah 1,5 m dari permukaan tanah, baik pada pertanaman campuran (polikultur) maupun pertanaman tunggal (monokultur) (Gambar 16). Pemasangan perangkap pada pukul 6.00–9.00 dan 15.00–18.00 paling banyak menarik lalat buah pada mangga dibandingkan dengan pemasangan pada pukul 9.00–12.00 dan 12.00–15.00 (Hasyim et al. 2010).
Gambar 16. Ketinggian pemasangan perangkap lalat buah pada pertanaman polikultur, berdasarkan anova dengan nilai titik kritis F = 3,055 dan P = 0,0000007 (kiri) dan pada pertanaman monokultur dengan nilai titik kritis F = 3,055 dan P = 0,0000003 (kanan).

Rata-rata jumlah lalat buah yang paling banyak ditangkap pada pertanaman polikultur adalah 50 ekor/jam dan pada pertanaman monokultur 80 ekor/jam. Walaupun perangkap diletakkan pada ketinggian yang sama, terdapat perbedaan jumlah tangkapan pada pertanaman polikultur dan monokultur ataupun jenis bahan atraktan yang digunakan. Hal itu berarti bahwa perbedaan bahan atraktan yang digunakan maupun tanaman inang tidak memengaruhi efektivitas ketinggian perangkap.

Hasil analisis menunjukkan bahwa ketinggian perangkap yang paling baik untuk tanaman polikultur maupun monokultur adalah 1,5 m. Hasil penelitian di luar negeri memperlihatkan bahwa ketinggian perangkap 1–2 m cukup efektif untuk menangkap lalat buah B. dorsalis jantan pada perkebunan jeruk (Howarth & Howarth 2000). Selain itu, jika tanaman inang mempunyai kanopi yang tinggi, perangkap tidak perlu diletakkan sesuai dengan tinggi kanopi tanaman karena lalat
buah membentuk pupa dan keluar dalam bentuk dewasa dari dalam tanah.

D. Warna Perangkap

E. Periode Pemasangan dan Pelepasan Perangkap

Semakin lama periode pemasangan perangkap pada areal pertanaman, semakin lengkap dan informatif profil spesies dan pola fluktuasi populasi lalat buah yang diperoleh. Secara umum, untuk tujuan monitoring, periode 3 tahun sudah mampu menghasilkan informasi lengkap tentang profil yang diinginkan. Bergantung pada tujuannya, periode pemasangan bervariasi dari 7, 14 hingga 30 hari sekali. Atraktan yang telah dipasang 3–4 minggu dilepas dari perangkap dan diganti dengan yang baru.

Populasi lalat buah mulai meningkat pada saat persarian bunga, kemudian agak menurun dan meningkat tajam saat buah mulai masak (biasanya pada awal musim hujan), lalu menurun

3.6. Kebijakan

Pelaksanaan perlindungan tanaman merupakan kewajiban dan tanggung jawab petani di lahan usahatannya. Pemerintah lebih banyak berperan sebagai fasilitator, sehingga diharapkan petani mampu menjadi manajer usahatannya, mampu mengambil keputusan dalam memilih dan memadukan cara-cara pengendalian yang serasi dan sesuai dengan ekosistem lahan usahatannya. Berkaitan dengan hal itu, petunjuk pengelolaan ekosistem pertanian perlu disederhanakan agar petani mudah memahami dan melaksanakan pengendalian OPT sesuai dengan konsep PHT, serta kompatibel dengan teknologi spesifik lokasi. Pengendalian OPT lebih menekankan pada pendekatan...
pengelolaan ekosistem secara keseluruhan, serta memerhatikan semua komponen yang terkait dalam usahatani. Dengan demikian, perlindungan tanaman merupakan bagian dari sistem pengelolaan lingkungan hidup.

Penerapan dan penyebarluasan PHT sangat bergantung pada kesiapan dan kemampuan sumber daya manusia, khususnya petani, petugas, dan masyarakat terkait (pengusaha dan penyedia jasa pertanian). Pemberdayaan masyarakat merupakan salah satu prioritas kegiatan pemerintah yang dilaksanakan melalui pelatihan, kursus, demonstrasi lapang, pendidikan, penyuluhan, dan sekolah lapang. Selain itu, pemerintah juga berupaya untuk memberikan informasi, rekomendasi, kemudahan, menciptakan situasi yang kondusif, serta memberikan bantuan apabila diperlukan.

3.7. Strategi

Agar program dan kegiatan pengendalian lalat buah dapat mencapai tujuan dan sasaran yang ditetapkan, diperlukan beberapa strategi sebagai berikut:

1) Meningkatkan pengamatan dan peramalan perkembangan lalat buah dan antisipasi pengendaliannya;

2) Memperkuat sistem informasi manajemen perlindungan tanaman dalam rangka peningkatan arus informasi yang berkaitan dengan masalah lalat buah;

3) Mengembangkan teknologi dan sarana pengendalian sesuai dengan sistem PHT yang efektif, mudah, dan aman bagi pelaksana perlindungan hortikultura, konsumen produk, dan lingkungan hidup, termasuk teknologi spesifik lokasi yang dapat dioperasionalkan oleh masyarakat setempat;
4) Mengembangkan, memantapkan, dan memasyarakatkan penerapan sistem PHT melalui peningkatan upaya-upaya penyuluhan, baik secara langsung maupun melalui media massa (cetak atau elektronik), serta penyediaan sarana informasi berupa buku pedoman, folder, dan poster;

5) Meningkatkan pemberdayaan pelaku perlindungan tanaman (perorangan dan lembaga) dengan peningkatan pengetahuan dan kemampuan SDM, menuju kemandiran petani dalam pelaksanaan pengendalian lalat buah, serta penyediaan sarana dan dana operasional yang memadai;

6) Mengembangkan dan menetapkan gerakan pengendalian di tingkat lapangan, koordinasi dengan maupun antarkelompok tani, dinas pertanian, pemerintah daerah, dan instansi terkait lainnya.
BAB 4.
KOMPONEN TEKNOLOGI PHT LALAT BUAH

4.1. Penanganan Prapanen

A. Fisik: Pembungkusan

Pembungkusan atau pemberongsongan buah sudah umum diterapkan petani untuk mencegah lalat buah betina meletakkan telur pada buah yang masih muda hingga menjelang tua/masak (Sarwar 2015; Hossain et al. 2019). Pembungkusan buah dengan kertas sudah lama dilakukan petani di sebagian besar daerah tropis Asia, khususnya untuk buah yang akan diekspor. Pembungkusan buah dapat mengurangi kerusakan buah hampir 100% (Sarward 2015; Hossain et al. 2019).

Pembungkusan buah untuk areal kebun yang luas, pohonnya tinggi, dan berbuah lebat dinilai kurang praktis. Namun, apabila upah tenaga kerja murah dan banyak tersedia, upaya tersebut dapat dilakukan. Keuntungan penerapan cara ini yaitu buah terhindar dari serangan lalat buah, bersih, mulus, dan bebas dari cemaran bahan kimia.

Petani dapat melakukan pembungkusan buah dengan menggunakan kertas, kertas koran bekas, kertas karbon, plastik hitam, daun pisang, daun jati, ataupun kain untuk buah-buahan yang tidak terlalu besar seperti belimbing dan jambu batu (Gambar 17). Untuk buah nangka atau cempedak, biasanya petani menggunakan anyaman daun kelapa, karung plastik atau
Setiap jenis pembungkus mempunyai kelebihan dan kekurangan. Yang perlu diperhatikan adalah bahan pembungkus hendaknya tidak mudah rusak, gelap, dan dapat mempertahankan kelembapan dalam pembungkus.

Waktu pembungkusan buah disesuaikan dengan jenis buah. Untuk buah belimbing, pembungkusan hendaknya dilakukan sedini mungkin dengan menggunakan kertas koran bekas (Gambar 17). Untuk buah mangga, pembungkusan dilakukan sebelum buah memasuki stadium masak. Lalat buah umumnya tertarik pada warna kuning dan metil eugenol atau amonia yang dihasilkan oleh beberapa jenis bunga dan buah. Oleh karena itu, pembungkusan buah sedini mungkin sangat membantu mengurangi serangan lalat buah.

Gambar 17. Pembungkusan buah belimbing dengan kertas koran bekas

B. Mekanik

Penelitian di Hawaii mengenai respons lalat buah terhadap umpan berwarna dan metil eugenol menunjukkan bahwa lalat buah betina tertarik dengan umpan berwarna kuning dan putih walalupun tanpa metil eugenol. Pilihan tersebut didasari oleh kebiasaan lalat betina mencari buah untuk meletakkan telur,
komponen teknologi PHT lalat buah yakni buah yang berwarna kuning atau putih (misalnya jambu batu yang berkulit putih kekuningan). Sementara lalat jantan lebih tertarik pada warna kuning dan putih seperti bunga golden shower (Cassia fistula L.) dan brexia (Brexia madagascariensis Thou). Penggunaan perangkap dengan umpan sebenarnya ditujukan untuk memantau populasi atau mendeteksi spesies lalat buah yang ada di lapangan. Pengendalian lalat buah menggunakan perangkap dengan atraktan akan berhasil apabila perangkap dipasang secara terus-menerus dan dalam jumlah yang banyak.

Atraktan yang digunakan berupa bahan kimia sintetis yang dapat mengeluarkan bau atau aroma makanan lalat buah, seperti aroma buah atau bau wewangian berahi lalat betina. Perangkap yang berisi atraktan yang dicampur dengan insektisida akan menarik lalat buah untuk masuk ke dalam perangkap dan akhirnya lalat buah mati karena pengaruh insektisida. Dapat juga menggunakan atraktan sintetis metil eugenol/cue lure yang digantung di dalam perangkap yang terbuat dari botol bekas kemasan air mineral untuk menangkap lalat jantan.

Atraktan berupa metil eugenol atau cue lure diteteskan pada kapas, kemudian digantungkan di bagian tengah botol perangkap. Di sampingnya dipasang dua buah corong yang berlawanan. Bagian dasar botol diberi sedikit air agar lalat buah yang jatuh mati terendam air (Gambar 18). Sebaiknya perangkap dipasang di bagian luar atau pinggir pertanaman agar lalat tidak berkumpul di tengah pertanaman.

Rata-rata jumlah lalat buah jantan yang tertangkap dari masing-masing perangkap bervariasi. Perangkap botol bekas air mineral dapat menangkap 37 ekor, modifikasi perangkap gypsy moth 6 ekor, perangkap steiner 17 ekor, perangkap delta 14 ekor, dan perangkap McPhail 52 ekor per hari (Tabel 2).
Gambar 18. Perangkap atraktan metil eugenol/cue lure yang digantung di dalam perangkap yang terbuat dari botol bekas air mineral

Tabel 2. Rata-rata populasi, jenis, dan persentase lalat buah yang tertangkap berbagai model perangkap.

<table>
<thead>
<tr>
<th>Model perangkap</th>
<th>Jumlah lalat buah jantan</th>
<th>Jenis lalat buah</th>
<th>Persentase jenis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botol air mineral</td>
<td>37,2 b</td>
<td>B. albistrigata</td>
<td>4,35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. carambolae</td>
<td>56,52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. cucurbitae</td>
<td>2,17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. indonesiae</td>
<td>4,35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. kinabalu</td>
<td>2,17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. melastomatos</td>
<td>2,17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. occipitalis</td>
<td>2,17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. papayae</td>
<td>21,73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. umbrosa</td>
<td>2,17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. thailandica</td>
<td>2,17</td>
</tr>
<tr>
<td>Delta transparan</td>
<td>13,8 cd</td>
<td>B. carambolae</td>
<td>53,70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. papayae</td>
<td>31,38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. nigrita</td>
<td>1,85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. occipitalis</td>
<td>1,85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. umbrosa</td>
<td>3,70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. unimacula</td>
<td>1,85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. verbascifoliae</td>
<td>3,70</td>
</tr>
</tbody>
</table>
Komponen Teknologi PHT Lalat Buah

<table>
<thead>
<tr>
<th>Komponen</th>
<th>Modifikasi</th>
<th>Sumber: Hasyim et al. (2006)</th>
</tr>
</thead>
<tbody>
<tr>
<td>McPhail</td>
<td>52,4 a</td>
<td>B. carambolae 54,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. albistrigata 16,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. cucurbitae 6,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. indonesiae 4,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. kinabalu 4,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. occipitalis 4,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. papayae 8,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. umbrosa 4,00</td>
</tr>
<tr>
<td>Modifikasi perangkap gypsy</td>
<td>6,2 d</td>
<td>B. carambolae 55,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. papayae 20,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. verbascifoliae 5,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. cucurbitae 15,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. indonesiae 5,00</td>
</tr>
<tr>
<td>Steiner</td>
<td>16,8 c</td>
<td>B. carambolae 91,66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. papayae 6,25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. verbascifoliae 2,08</td>
</tr>
</tbody>
</table>

Keterangan:
Angka-angka di dalam lajur yang sama diikuti oleh huruf yang sama, tidak berbeda nyata menurut uji DMRT pada taraf nyata 5%.

Hasil penelitian menunjukkan bahwa jumlah lalat buah jantan yang dapat ditangkap berbeda nyata untuk masing-masing perangkap yang digunakan. Model perangkap yang paling banyak menangkap lalat buah jantan adalah perangkap McPhail yaitu 52 ekor/perangkap/hari (Gambar 19). Sementara hasil tangkapan perangkap gypsy moth paling sedikit, yaitu 6 ekor/perangkap/hari. Hasil penelitian di luar negeri menunjukkan bahwa perangkap McPhail yang diberi atraktan sintetis (cue lure) paling banyak menangkap lalat buah C. capitata dibandingkan dengan perangkap cylindrical dan Gaaton (Gazit et al. 1998).

Warna kuning di bagian dasar perangkap McPhail memberikan tanggapan positif bagi lalat buah B. dorsalis jantan. Hal ini karena spesies lalat buah memiliki ketertarikan yang

Gambar 19. Beberapa model perangkap lalat buah: (a) botol bekas air mineral, (b) modifikasi perangkap *gypsy moth*, (c) perangkap steiner, (d) perangkap delta transparan, dan (e) perangkap McPhail.

Jenis lalat buah yang paling dominan tertangkap pada semua perangkap yang diberi atraktan sintesis metil eugenol adalah *B. carambola*. Hal ini mungkin karena pada saat penelitian di sekitar pekarangan rumah penduduk banyak ditanam pohon belimbing yang merupakan inang bagi jenis lalat buah tersebut. Walaupun petani juga banyak yang menanam nangka, tanaman tersebut belum banyak yang berbuah dan kalaupun ada yang
berbuah, buahnya masih kecil sehingga populasi lalat buah *B. umbrosus* yang tertangkap relatif sedikit.

Atraktan dapat pula diletakkan dalam perangkap yang diberi lem tikus sehingga lalat buah yang tertarik pada atraktan akan mati karena menempel pada perangkap tersebut (Gambar 20). Perangkap berumpan digantung di ranting atau cabang pada ketinggian 1,5–2 m di atas permukaan tanah atau pada tajuk terendah dari tanaman.

![Perangkap lem tikus dan perangkap perekat kuning untuk menangkap lalat buah.](image)

Perangkap yang digunakan sebaiknya terbuat dari bahan yang ringan dan mudah didapat seperti plastik, seng tipis, aluminium, dan kertas manila tahan air. Perangkap dapat dimodifikasi dengan umpan kering atau umpan cair.

C. Kultur Teknis

a. **Sanitasi Kebun**

Kegiatan ini bertujuan untuk memutus atau mengganggu daur hidup lalat buah sehingga perkembangan lalat buah dapat
ditekan. Sanitasi dilakukan dengan mengumpulkan buah yang jatuh atau busuk kemudian dimusnahkan dengan dibakar atau dibenamkan di dalam tanah dengan cara membuat lubang berukuran 1 m x 0,5 m atau 1 m x 1 m (Khan et al. 2017; Sarwar 2015). Dengan demikian, larva yang ada di dalam buah tidak dapat meneruskan siklus hidupnya menjadi pupa. Sampah/serasah di sekitar tanaman juga dikumpulkan dan dibakar atau dipendam dalam tanah (Gambar 21). Pastikan kondisi dalam tanah tidak memungkinkan larva berkembang menjadi pupa. Pupa yang ada dalam tanah dapat dimusnahkan dengan cara membalikkan tanah di sekitar tanaman agar terkena sinar matahari.

Gambar 21. Buah yang busuk dikumpulkan dan dibenamkan ke dalam lubang dengan ukuran panjang 1 m, lebar 1 m, dan tinggi 0,5 m.

Buah gugur yang dibiarkan berserakan di bawah pohon juga berpeluang untuk diteluri lalat buah. Hal ini sesuai dengan hasil pengamatan pemeliharaan (rearing) bahwa buah jambu batu, jambu air, dan belimbing yang gugur sangat potensial sebagai sumber infeksi lalat buah. Namun demikian, sebagian besar petani beranggapan bahwa sanitasi buah yang gugur kurang bermanfaat dan hanya membuang waktu saja.
Untuk mengganggu daur hidup lalat buah dapat juga dilakukan dengan membalikkan tanah di bawah tajuk pohon, tetapi harus dilakukan secara hati-hati agar tidak melukai akar. Dengan membalikkan tanah, pupa yang terdapat di dalam tanah akan terkena sinar matahari, terganggu hidupnya, dan akhirnya mati. Semak-semak atau gulma di sekitar areal pertanaman dapat menjadi inang alternatif, terutama pada saat tidak musim berbuah, sehingga perlu dibersihkan sampai radius 1,5–3,0 km.

b. Pembersihan Gulma

Gulma dapat menjadi tempat singgah lalat buah sehingga harus dibersihkan. Beberapa jenis gulma juga berpotensi untuk menarik kedatangan lalat buah sehingga harus dibersihkan.

D. Biologis/Pestisida Biorasional

a. Biopestisida

Penggunaan biopestisida pada sayuran dapat menjamin produk bersih dari cemaran pestisida sintetis, selain mampu mendukung pelaksanaan PHT secara utuh. Pada cabai, misalnya, kualitas cabai sering kali menurun karena serangan lalat buah (B. dorsalis). Biopestisida Spinosad and Lecanicillium muscarium dapat
mengendalikan lalat buah yang menyerang labu-labuan dengan persentase buah yang bebas dari serangan hama mencapai 83% (Rahman et al. 2019).

b. **Biorepellent**

Secara tradisional minyak atsiri dari tumbuhan telah digunakan untuk mengusir serangga karena minyak atsiri bersifat menolak hama (*biorepellent*). Minyak atsiri serai wangi dan serai dapur, misalnya, nyata menurunkan intensitas serangan lalat buah pada cabai. Intensitas serangan lalat buah pada petak perlakuan minyak serai wangi dan minyak serai dapur relatif lebih rendah dibandingkan dengan petak perlakuan insektisida dan kontrol (Hasyim et al. 2018).

c. **Pemanfaatan Musuh Alami**

Pengendalian secara biologis dapat memanfaatkan musuh alami baik parasitoid, predator maupun patogen, namun di Indonesia teknik pengendalian ini belum banyak diterapkan. Jenis parasitoid yang banyak ditemukan adalah *Biosteres* sp. dan *Opius* sp. (Braconidae), serta *Psytalia* sp. (Octriana 2010; Sari et al. 2019). Di Sumatera Barat terdapat empat jenis parasitoid yang memarasit lalat buah *B. tau*, yaitu *Opius oophilus*, *O. longicaudatus*, *O. vandenboschi*, dan *Tetrastichus giffardianus*. Parasitoid ini menyebabkan kematian pupa yang dikumpulkan di lapangan hingga 50,09% dan memparasit larva pada buah yang jatuh sebesar 31,20%. *Tetrastichus giffardianus* dominan di kebun markisa dengan kemampuan parasitasi 38,06%, sedangkan *Opius* spp. stadia larva lebih dominan dengan kemampuan parasitasi 24% (Octriana 2010). Di Hawaii, parasitoid *Fopius* (*Biosteres*) *arisanus* dapat memarasit telur, larva, dan pupa lalat buah pada melon berturut-turut 38%, 40%, dan 47%, sedangkan *Psyttalia fletcheri* dapat memarasit larva dan pupa lalat buah masing-masing 24% dan 79% (Bautista et al. 2004).
Komponen Teknologi PHT Lalat Buah

Diachasmimorpha kraussii (Hymenoptera: Braconidae) dan Fopius sp. merupakan parasitoid larva lalat buah (Gambar 22). Di Australia, parasitoid D. kraussii dan F. arisanus potensial untuk mengendalikan lalat buah B. tryoni secara biologi (Clarke et al. 2010).

Gambar 22. Beberapa musuh alami lalat buah: Diachasmimorpha kraussii, Fopius sp., Oecophylla smaragdina (semut rangrang), dan Odontomachus sp.
d. Atraktan

Atraktan dapat digunakan untuk mengendalikan lalat buah dengan tiga cara, yaitu: (a) mendeteksi atau memonitor populasi lalat buah, (b) menarik lalat buah ke dalam perangkap, dan (c) mengacaukan lalat buah dalam melakukan perkawinan, berkumpul maupun makan (Metcalf & Luckmann 1982). Di alam, lalat jantan mengonsumsi metil eugenol dan setelah diproses dalam tubuhnya akan menghasilkan zat penarik (sex pheromone) bagi lalat betina pada proses perkawinan. Penelitian Tan & Nishida (1996) menunjukkan bahwa lalat buah jantan dewasa yang mengonsumsi metil eugenol akan meningkatkan produksi komponen seks feromon, seperti trans-coniferyl alcohol (CF), 2-allyl-4,5 dimethoxyphenol (allyl-DMP), dan cis3,4-dimethoxycinnamyl alcohol (cis-DCA).

Metil eugenol merupakan salah satu stimulus untuk meningkatkan keberhasilan perkawinan lalat buah B. carambolae (Tati-Subahar 1999). Shelly et al. (2005) melaporkan bahwa konsumsi metil eugenol yang dikombinasikan dengan PH pada B. dorsalis yang telah matang seksual mampu mendorong keberhasilan kawin hingga 47%.

Atraktan berbahan aktif metil eugenol tergolong sebagai food lure, artinya lalat jantan akan datang tertarik untuk keperluan makan (food), sehingga matang seksualnya lebih cepat. Lalat jantan akan berusaha untuk mendapatkan metil eugenol sebelum melakukan perkawinan. Berdasarkan sifat atraktan inilah pengendalian lalat buah dapat dilakukan dengan cara menekan populasi lalat jantan. Seiring dengan waktu, populasi lalat buah di alam akan menurun karena betina tidak dapat dibuahi oleh jantan.

Beberapa tanaman yang dapat menghasilkan minyak atsiri dengan kandungan bahan aktif metil eugenol ialah Melaleuca bracteata dan selasih (Ocimum spp.) (Kardinan 2000). Selasih
memiliki beberapa spesies, bahkan beberapa bentuk walaupun dari spesies yang sama, sehingga dikenal sebagai tanaman yang bersifat polimorfis. Terdapat dua kelompok tanaman selasih dengan kandungan utama yang berbeda, yakni kelompok penghasil eugenol (O. basilicum, O. Grattisimum, dan lainnya) dan kelompok penghasil metil eugenol (O. tenuiflorum, O. sanctum, O. minimum, dan lainnya).

Ocimum minimum

Jenis selasih ini mempunyai dua tipe, yaitu berbunga ungu dan putih. Bunganya bergerombol dengan warna daun hijau (Gambar 23). Pada pagi hari, baik daun maupun bunganya sering dikerubuti lalat buah yang jumlah per pohonnya mencapai ratusan. Rendemen minyaknya sekitar 0,56% dan minyak atsirinya mengandung 64% metil eugenol. Selasih jenis ini hanya dapat dipanen empat kali, karena setelah tanaman berumur setahun, produksi daun rendah sehingga perlu peremajaan.

Gambar 23. Daun dan bunga *Ocimum minimum*

Ocimum sanctum

Selasih jenis ini mempunyai ciri khas bunga dan daunnya berwarna ungu. Apabila daunnya diremas atau dipanen, dapat menimbulkan rasa pening, apalagi sewaktu diangkut ke tempat penyulingan dengan mobil dalam keadaan ventilasi udara kurang baik (Gambar 24). Rendemen daun yang dicampur
bunganya sekitar 0,46% dengan kadar metil eugenol 60%. Seperti selasih lainnya, jenis ini pun perlu peremajaan.

![Gambar 24. Ocimum sanctum](image)

Ocimum tenuiflorum

Selasih jenis ini memiliki ciri khas daunnya hijau keriting dengan bunga panjang berwarna putih. Rendemen minyaknya mencapai 0,4% dengan kandungan metil eugenol 58%. Jenis ini dapat dipanen 6–8 kali dan tanaman mampu bertahan hingga dua tahun lebih, bergantung pada pemeliharaan (Gambar 25).

![Gambar 25. Ocimum sanctum](image)

Melaleuca bracteata

Melaleuca merupakan suatu genus dalam famili Myrtaceae (Gambar 26). Bijinya sangat kecil, terdapat pada kapsul-kapsul di

Gambar 26. Melaleuca bracteata

Melaleuca tumbuh dengan baik di dataran rendah hingga dataran tinggi. Semakin tinggi tempat tumbuh semakin baik pertumbuhannya. Kandungan aktif dalam minyak atsirinya adalah metil eugenol sekitar 76%. Rendemen minyak dari daun sekitar 1,3%.

Penyulingan Bahan Tanaman

Penyulingan minyak atsiri dapat dilakukan melalui pengukusan, perebusan, dan penguapan (Gambar 27). Cara yang umum digunakan adalah pengukusan. Alat pengukus dapat dibuat dari drum bekas atau sejenisnya, namun minyak yang dihasilkan kualitasnya kurang baik. Alat penyulingan yang paling baik adalah yang terbuat dari bahan antikarat (stainless).
Badan Penelitian dan Pengembangan Pertanian Kementerian Pertanian telah menghasilkan atraktan nabati berbahan baku selasih dan *Melaleuca* yang masing-masing disebut OCIMOL dan MELANOL (Gambar 28). Kedua produk tersebut dapat membantu petani dalam mengendalikan lalat buah.

Gambar 27. Penyuling minyak atsiri berkapasitas 50 liter

Gambar 28. Produk selasih dan *Melaleuca* yang dihasilkan oleh Balai Penelitian Tanaman Rempah dan Obat (Balittro).

e. **Peraturan Karantina**

Penerapan peraturan karantina yang ketat dapat mencegah masuknya lalat buah dari wilayah atau negara yang mempunyai

f. Teknik Serangga Mandul (TSM)

Prinsip kerja teknik serangga mandul (TSM) adalah menggunakan serangga hama yang telah dibiakkan di laboratorium dan dimandulkan dengan iradiasi sinar gama untuk menekan populasi hama di kebun. Serangga mandul yang dilepas di kebun akan berbaur dan bersaing dengan serangga normal sehingga dapat mencegah pembentukan keturunan. Pelepasan serangga mandul sebanyak sembilan kali populasi lapang secara berulang-ulang dapat menurunkan populasi hama sampai di bawah ambang ekonomi, atau bila kebun cukup terisolasi sampai punah (pest free). TSM telah berhasil digunakan untuk mengendalikan berbagai jenis lalat buah, dimulai tahun 1965 untuk lalat buah semangka Dacus (Bactrocera) cucurbitae di Pulau Rota (Steiner 1965). TSM kemudian digunakan dalam program pemusnahan lalat buah mediterania Ceratitis capitata di
Teknologi Pengendalian Hama Lalat Buah

Lalat buah merupakan hama dengan mobilitas sangat tinggi, penularannya cepat antarkebun bahkan antarwilayah. Oleh karena itu, pengendalian lalat buah memerlukan cara pendekatan yang holistik. TSM merupakan salah satu cara yang tepat untuk mengendalikan lalat buah. Aplikasi TSM dilakukan dengan prosedur sebagai berikut:

1) **Pengamatan dinamika populasi dan populasi absolut lalat buah di kebun.** Kegiatan ini bertujuan untuk menentukan saat pelepasan yang tepat dan jumlah minimum lalat buah mandul yang perlu dilepas. Dinamika populasi diamati dengan pemasangan perangkap metil eugenol, sedangkan populasi absolut dengan teknik pelepasan dan penangkapan lalat bertanda.

2) **Pembiakan massal lalat buah di laboratorium.** Larva lalat buah dipelihara dengan makanan buatan yang terdiri atas dedak gandum (26%), ragi roti (3,6%), gula pasir (12%), nipagin (0,1%), natrium benzoat (0,1%), dan air (58%), kemudian ditambahkan HCl secukupnya agar pH campuran berada pada kisaran 4,0–4,5. Sementara lalat buah dewasa diberi makanan gula dan yeast hidrolisat (Kuswadi et al. 2000).

3) **Pemandulan dengan iradiasi.** Untuk memperoleh lalat dewasa B. carambolae, pada 7–8 hari (kurang lebih satu hari menjelang muncul menjadi dewasa), kepompong diiradiasi dengan gama dosis 90 Grey (Kuswadi et al. 1999b).

4) **Pengiriman.** Kepompong yang telah diiradiasi dimasukkan ke dalam kantong-kantong plastik di dalam kotak stirofoam
untuk dikirim ke kebun. Di dalam kotak diletakkan kantong-kantong es secukupnya untuk mencegah kenaikan suhu selama pengiriman.

5) **Pelepasan.** TSM dilepaskan melalui udara *(aerial)* atau di tanah *(ground release)*.

6) **Evaluasi.** Keberhasilan TSM dapat diukur dari penurunan serangan lalat buah atau populasi lalat buah di kebun. Penurunan populasi dapat diamati dengan mengukur perbandingan antara lalat buah steril dan lalat normal dengan perangkap metil eugenol.

Integrasi TSM dengan teknik pengendalian lain bersifat sinergis. Makin rendah populasi lalat buah, makin tinggi efektivitas TSM. Oleh karena itu, penurunan populasi lalat buah sebelum pelepasan serangga mandul, misalnya dengan insektisida atau penangkapan massal dengan metil eugenol, akan meningkatkan efektivitas TSM. Dalam praktiknya, TSM dilaksanakan secara terpadu dengan teknik pengendalian lain.

g. **Kimia**

Pengendalian menggunakan bahan kimia dilakukan dengan mencampur insektisida dengan zat penarik (atricktan) maupun *food attractant* (tertarik dengan makanan). *Food attractant* yang biasa digunakan adalah protein hidrolisa yang berasal dari limbah bir yang kemudian diberi insektisida spinozad dan disemprotkan pada tanaman. Umpan beracun akan dimakan oleh lalat buah dan menyebabkan kematian. Insektisida yang digunakan antara lain adalah yang berasal aktif alfa sipermetrin 50 g/l, betasiflutrin 25 g/l, profenofos 500 g/l, dan deltametrin 25 g/l.
4.2. Penanganan Pascapanen

Salah satu faktor yang menentukan keberhasilan agribisnis buah adalah penanganan gangguan OPT pascapanen. Pengelolaan OPT pascapanen pada buah dilakukan dengan mempertimbangkan harga pestisida kimia dan biaya aplikasinya, risiko cemaran yang ditimbulkan, penolakan publik terhadap penggunaan pestisida, suhu, kelembapan, curah hujan, populasi gulma, serangga dan penyakit, serta populasi serangga predator atau parasit yang kemungkinan ada di bangsal penanganan pascapanen buah. Penanganan pascapanen buah dapat menggunakan teknik iradiasi, pencelupan, fumigasi, dan perlakuan udara panas atau udara dingin.

A. Iradiasi

Beberapa spesies lalat buah merupakan hama karantina yang diwaspadai oleh negara pengimpor buah. Oleh karena itu, agar dapat diekspor, buah atau sayuran buah harus mendapat perlakuan karantina atau pengamanan yang tepat oleh negara pengimpor, sesuai dengan pedoman International Standard of Phytosanitary Measures (ISPM).

Perlakuan iradiasi menjadi pilihan karena pelarangan penggunaan metil bromida dan metil dibromida, fumigan yang paling banyak digunakan dalam perlakuan karantina. Selain itu, iradiasi memiliki keunggulan tidak meninggalkan residu, praktis, dan efektivitasnya tinggi karena iradiasi gama memiliki daya tembus tinggi. Namun demikian, perlu ditentukan dosis perlakuan yang tepat agar mampu mematikan seluruh hama dalam buah dan sayuran buah. Untuk itu perlu dilakukan penelitian dengan prosedur berikut.
a. Penanganan Prairadiasi

Tidak diperlukan perlakuan khusus terhadap buah atau sayuran sebelum diiradiasi. Buah cukup mendapat perlakuan seperti biasanya, yaitu disimpan dalam suhu dan atmosfer yang sesuai.

b. Efikasi Perlakuan Iradiasi Skala Laboratorium

Tujuannya adalah untuk mencari dosis yang tepat, yaitu dosis yang mampu menyebabkan kematian 100%. Parameter yang diamati meliputi jumlah kepompong yang terbentuk dan jumlah lalat dewasa yang muncul dari kepompong akibat perlakuan. Data yang diperoleh dibuat kurva pengaruh dosis terhadap jumlah lalat dewasa yang terbentuk, untuk memperoleh nilai probit 9 (LD\textsubscript{99,9968}).

c. Uji Konfirmasi

Tujuannya adalah untuk membuktikan bahwa dosis yang dimaksud benar dapat mematikan seluruh lalat buah dalam komoditas siap ekspor. Oleh karena itu, uji ini harus dilaksanakan dalam kondisi sebenarnya atau dalam simulasi. Kematian total dengan perhitungan probit 9 (LD\textsubscript{99,9968}) dengan tingkat kepercayaan 95% memerlukan sasaran perlakuan minimal 93.613 ekor larva lalat buah, dengan hasil tak satu pun larva yang hidup setelah perlakuan. Hasil penelitian menunjukkan bahwa iradiasi dosis 150 Gy terhadap 18.000 ekor larva instar tiga lalat buah \textit{B. dorslias} kompleks dalam buah belimbing menyebabkan tak satu pun lalat dewasa yang muncul. Pada \textit{B. carambolae}, uji konfirmasi dapat dilakukan pada dosis sekitar itu.
B. Pencelupan

Perlakuan perendaman/pencelupan buah atau sayuran buah dapat menggunakan larutan dimetoat, sebagai contoh untuk *B. dorsalis*. Pencelupan dengan konsentrasi larutan 400 mg/l selama 1 menit dapat mematikan lalat buah.

C. Fumigasi

Fumigasi biasanya dilakukan pada buah yang diduga mengandung lalat buah di dalamnya. Fumigasi menggunakan pestisida berbentuk gas dan harus dilakukan di dalam ruangan tertutup.

D. Perlakuan Udara Panas dan Udara Dingin

Perlakuan pascapanen buah-buahan dan sayuran untuk mencegah penyebaran lalat buah dapat menggunakan mesin modern dengan mengatur suhu tertentu. Sebagai contoh, lalat buah *B. tryoni* dan *B. dorsalis* dapat dimatikan dengan uap panas suhu 44 °C selama 3 jam perlakuan.

Penyebaran lalat buah juga dapat dilakukan dengan pengaliran udara dingin dalam gudang penyimpanan. Pada *B. tryoni*, perlakuan pengaliran udara dingin dapat dilakukan selama 13 hari pada suhu ≤ 0 °C, 14 hari pada ≤ 0,55 °C, 18 hari pada ≤1,11°C, 20 hari pada ≤1,66 °C, atau 22 hari pada ≤1,22 °C.
BAB 5.
STRATEGI KEBIJAKAN PENGUATAN KARANTINA

Undang-undang Nomor 16 Tahun 1992 tentang Karantina Hewan, Ikan, dan Tumbuhan menyebutkan bahwa karantina tumbuhan bertujuan untuk: (1) mencegah masuknya organisme pengganggu tumbuhan karantina (OPTK) dari luar negeri ke dalam wilayah Indonesia, (2) mencegah tersebarnya OPTK dari suatu area ke area lain di Indonesia, dan (3) mencegah keluarnya OPT tertentu dari Indonesia apabila negara tujuan menghendakinya. Dengan demikian, hal yang diatur oleh undang-undang tersebut dititikberatkan pada pengendalian OPT dan OPTK. Dengan dianutnya asas kelestarian sumber daya alam hayati tumbuhan maka penyelenggaraan karantina tumbuhan semata-mata ditujukan untuk melindungi kelestarian sumber daya alam hayati tumbuhan dari serangan OPTK.

Badan Karantina Pertanian (Barantan) Kementerian Pertanian senantiasa melakukan pengawasan terhadap penyelenggaraan perkarantinaan melalui UPT lingkup Barantan yang tersebar di seluruh Indonesia. Hal ini sesuai dengan amanat Undang-Undang Nomor 21 Tahun 2019 tentang Karantina Hewan, Ikan dan Tumbuhan, yakni untuk melindungi kelestarian sumber daya alam hayati dari ancaman hama penyakit hewan karantina (HPHK) dan organisme pengganggu tumbuhan karantina (OPTK). Selain pengawasan di lapangan,
Barantan juga melakukan penindakan terhadap pelanggar peraturan karantina pertanian.

Setiap media pembawa OPT/OPTK yang dimasukkan ke dalam, dibawa atau dikirim dari suatu area ke area lain di dalam wilayah Indonesia dikenakan tindakan karantina. Media pembawa OPT/OPTK yang dikeluarkan dari wilayah Indonesia tidak dikenakan tindakan karantina, kecuali disyaratkan oleh negara tujuan. Tindakan karantina yang dilakukan oleh petugas karantina berupa pemeriksaan, pengasingan, pengamatan, perlakuan, penahanan, penolakan, pembersihan, serta pembebasan.

Dalam operasional perkarantinaan dikenal istilah OPTK. Menurut Undang-undang Nomor 16 Tahun 1992, yang dimaksud dengan OPTK adalah semua OPT yang ditetapkan oleh pemerintah untuk dicegah masuk ke dalam dan tersebar di wilayah Indonesia. Penetapan suatu OPT menjadi OPTK harus didasarkan pada analisis risiko OPT (pest risk analysis). Dengan demikian, penetapan OPT menjadi OPTK harus didasarkan atas penilaian apakah OPT itu dapat menimbulkan suatu risiko dan dampak terhadap lingkungan dan ekonomi jika berhasil masuk ke Indonesia. OPT/OPTK yang menjadi sasaran pemeriksaan karantina meliputi cendawan (jamur), bakteri, virus, serangga (inseksa), keong (slug and snails), tungau (akarina), nematoda, gulma, dan fitomonas.

Penerapan peraturan karantina yang ketat mengharuskan penanganan pascapanen yang baik untuk mencegah penyebaran OPTK di dalam negeri dan meningkatkan ekspor produk hortikultura dari Indonesia. Kegiatan monitoring di luar dan di dalam negeri untuk menginventarisasi jenis-jenis lalat buah dan mengumpulkan informasi distribusi lalat buah, sangat menunjang pelaksanaan karantina untuk mencegah masuk atau meluasnya penyebaran lalat buah di suatu wilayah.

Karantina pertanian memiliki peran penting dan strategis dalam penguatan *border management control*. Saat ini telah banyak ditetapkan tempat pemasukan dan pengeluaran media pembawa HPHK maupun OPTK, begitu pula Pos Lintas Batas Negara di wilayah perbatasan antarnegara. Dalam hal ini, tidak hanya diperlukan pembangunan sarana dan prasarana, tetapi juga dukungan sumber daya manusia yang kompeten dan andal.

Pelaksanaan operasional perkarantinaan selama ini masih mengalami berbagai kendala, terutama di wilayah perbatasan antarnegara. Tidak dipungkiri kondisi wilayah perbatasan cukup sulit, sementara tanggung jawab besar dipikul untuk melindungi negeri dari ancaman HPHK, OPTK, hewan, dan tumbuhan asing yang dapat merusak sumber daya alam hayati serta masuknya pangan segar yang dapat membahayakan kesehatan manusia dan lingkungan.

Kondisi tersebut menjadi peluang maraknya pelanggaran dalam karantina pertanian, seperti pemasukan pangan secara ilegal melalui wilayah perbatasan. Pemasukan komoditas pertanian tanpa pemeriksaan karantina berpotensi membawa HPHK dan OPTK ke wilayah Indonesia yang dapat merusak industri pertanian di dalam negeri.
Meningkatnya lalu lintas dan volume perdagangan dengan berbagai moda transportasi dan bertambahnya tempat pemasukan/pengeluaran di sekitar wilayah perbatasan baik darat maupun laut, membuka peluang masuknya pangan secara ilegal dari luar negeri. Di sisi lain, pertambahan jumlah penduduk di wilayah perbatasan meningkatkan kebutuhan pangan, sementara upaya pemenuhan kebutuhan pangan dari provinsi terdekat masih kurang memadai. Kondisi ini menjadi peluang maraknya pelanggaran, seperti pemasukan pangan secara ilegal dari luar negeri melalui wilayah perbatasan. Importasi pangan ilegal berpotensi menyebarkan HPHK dan OPTK ke sentra produksi pertanian di Indonesia serta mengancam program kemandirian pangan.

Hafsi, A., Facon, B., Ravigné, V., Chiroleu, F., Quilici, S., Chermiti, B. & Duyck, P.F. 2016. Host plant range of a fruit fly

Liang, G.Q., Yang, G.H., Liang, F., Lan, Q.Q. & Xu, W. 1991. The fisrt report of an analysis of proteins from larvae of 4 species...

Sarwar, M. 2015. How to manage fruit fly (Family Tephritidae) pests damage on different plant host species by take up of physical control measures. *Int. J. Animal Biol.* 1 (4): 124–129.

Teknologi Pengendalian Hama Lalat Buah
INDEKS

B
Bactrocera albistrigata 1,5,30
Bactrocera dorsalis 5, 18,19,
Bactrocera carambolae 5,6,7,13,15,44,51,52,58,61
Bactrocera caryae 13
Bactrocera caudatus 7
Bactrocera caudata 2, 5,
Bactrocera conformis 6, 7, 13, 16, 17, 20,
Bactrocera cucurbitae 2, 5, 25, 26, 44
Bactrocera ferrugineus 6, 7, 17, 20
Bactrocera frauenfeldi 28
Bactrocera hageni 6,
Bactrocera kandiensis 13,
Bactrocera maculipennis 6, 7, 20
Bactrocera neohomeralis 46
Bactrocera papayae 2, 5, 6, 7, 13, 14,
Bactrocera pedestris 7, 16, 20
Bactrocera philippinensis 13
Bactrocera pyrifoliae 13
Bactrocera tau 2, 5, 6, ,7, 20, 21, 22
Bactrocera tryoni 46, 51, 62
Bactrocera umbrosa 2, 5, 7
Bactrocera vespoides 7

C
Ceratitis capitata 57

D
Dacus caudatus var. nubilus 20,
Dacus dorsalis 17, 71, 73

Diachasmimorpha kraussii 51

I
Imago 8, 9, 10, 12, 14, 24, 26, 27, 28, 30
Instar 9, 10, 26, 27, 30, 61
Intensitas serangan 50

K
Kehilangan hasil v, 2

L
Larva vii, 1, 9, 10, 14, 15, 17, 19, 21, 22, 26, 27, 30, 32, 48, 49, 50, 51, 61, 82

M
Melaleuca bracteata 52, 54, 55
Monitoring 31, 32, 65

O
Opis sp 33, 50, 51
Ocimum spp. 52

P
Parasitoid 50, 51, 82
Pheidole megacephala 51
Philantus turbidus 51
PHT vii, 5, 31, 37, 38, 29, 41, 49
Pupa 9, 10, 11, 15, 19, 22, 26, 27, 30, 36, 48, 49, 50

S
Strumeta dorsalis 17

T
Telur vii, 1, 9, 10, 11, 12, 15, 19, 26, 41, 48, 50, 57

Z
Zelus renardi 51
Glosarium

Atraktan : Zat penarik merupakan zat kimia yang dapat menyebabkan serangga bergerak mendekati sumber zat tersebut.

Bio-repellent : Menolak atau mencegah kehadiran serangga.

Dinamika populasi : Naik turunnya jumlah serangga dalam suatu populasi. Penyebab naik turunnya jumlah populasi serangga dipengaruhi oleh natalitas (kelahiran), mortalitas (kematian), dan migrasi (perpindahan).

Endemis : Keadaan atau karakteristik wilayah atau lingkungan tertentu yang ada hubungannya dengan penyakit. Penyakit ini selalu ada di daerah tersebut tetapi frekuensinya rendah.

Feromon : Substansi kimia yang dilepaskan oleh suatu organisme ke lingkungannya yang memampukan organisme tersebut mengadakan komunikasi secara intraspesifik dengan individu lain. Feromon bermanfaat dalam monitoring
populasi maupun pengendalian hama.

Mesonotum : Segmen toraks tengah.

Metil eugenol : Senyawa kimia yang bersifat atraktan atau sebagai penarik serangga terutama terhadap lalat buah. Atraktan tidak meninggalkan residu pada buah dan mudah diaplikasikan pada lahan yang luas.

Musuh alami : Organisme yang ditemukan di alam yang dapat membunuh serangga sekaligus melemahkan serangga, sehingga dapat mengakibatkan kematian pada serangga dan mengurangi fase reproductif serangga. Musuh alam biasanya mengurangi jumlah populasi serangga, inang atau pemangsa, dengan memakan individu serangga.

Organisme Pengganggu Tumbuhan (OPT) : Semua organisme yang dapat merusak/ mengganggu kehidupan atau menyebabkan kematian pada tanaman pangan dan hortikultura, termasuk di dalamnya hama, penyakit, dan gulma.

Ovipositor : Alat untuk meletakkan telur pada area yang sesuai serta dengan komposisi baris yang sesuai, misalnya meletakkan telur di permukaan daun dengan posisi berjajar memanjat.

Parasitoid : Serangga yang larvanya berkembang pada organisme lain sebagai inang dan umumnya membunuh inangnya.

Patogen : Mikroorganisme yang dapat menyebabkan infeksi dan menimbulkan penyakit terhadap OPT. Secara spesifik
mikroorganisme yang dapat menimbulkan penyakit pada serangga disebut entomopatogen. Patogen berguna karena mematikan banyak jenis serangga hama tanaman, seperti jamur, bakteri dan virus. Patogen yang bisa mengendalikan hama dan penyakit disebut sebagai pestisida mikroba.

Polifag : Hama yang mempunyai banyak jenis tanaman inang.

Pengendalian Hama Terpadu (PHT) : Suatu konsepsi atau cara berpikir mengenai pengendalian Organisme Pengganggu Tumbuhan (OPT) dengan pendekatan ekologi yang bersifat multidisiplin untuk mengelola populasi hama dan penyakit dengan memanfaatkan beragam taktik pengendalian yang kompatibel dalam suatu kesatuan koordinasi pengelolaan.

Pengendalian hayati : Taktik pengelolaan hama secara sengaja dengan memanfaatkan atau memanipulasi musuh alami/agens hayati untuk menekan atau mengendalikan OPT.

Perangkap : Suatu cara untuk menjebak hama menggunakan pemikat tertentu agar jebakan berhasil menarik perhatian mangsa untuk mendekatinya. Perangkap dapat dibuat dengan memberi umpan sesuatu yang disukai hama. Perangkap ada yang dibuat berdasarkan warna, cahaya, aroma, dan rasa yang disukai hama.
<table>
<thead>
<tr>
<th>Pestsida biorasional</th>
<th>Pestisida yang berasal dari alam yang sangat minim pengaruhnya terhadap manusia, lingkungan, dan organisme lain yang bermanfaat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predator</td>
<td>Sejenis hewan yang memburu, menangkap, dan memakan hewan lain. Hewan yang diburu pemangsa disebut mangsa. Pemangsa biasanya karnivora (pemakan daging) atau omnivora (pemakan tanaman dan hewan lain).</td>
</tr>
<tr>
<td>Sanitasi</td>
<td>Kondisi yang tidak sesuai dengan pertumbuhan dan perkembangbiakan hama.</td>
</tr>
<tr>
<td>Taksonomi</td>
<td>Penyusunan yang teratur dan bernorma mengenai organisme-organisme ke dalam kelompok-kelompok yang tepat dengan menggunakan nama-nama yang sesuai dan benar.</td>
</tr>
<tr>
<td>Toraks</td>
<td>Ruas-ruas badan serangga di belakang kepala, ada tiga: pro, meso, dan metatoraks.</td>
</tr>
</tbody>
</table>
Teknologi Pengendalian Hama Lalat Buah

Lalat buah menjadi hama penting pada buah-buahan maupun sayuran buah. Kehilangan hasil akibat serangan hama ini bervariasi, bergantung pada kondisi lingkungan pertanaman dan jenis tanaman yang diserang. Dalam upaya mengendalikan hama ini, pengetahuan tentang jenis-jenis lalat buah dan tanaman inangnya, sangat penting bagi para petugas maupun pelaku perlindungan tanaman hortikultura agar pengendalian tepat sasaran dan efisien.

Pengendalian lalat buah hendaknya dilakukan secara terpadu, mulai dari prapanen sampai pascapanen. Perlakuan prapanen, seperti pembungkusan buah, penggunaan perangkap, kultur tenis, dan biologis/biopestisida rasional, terbukti dapat menyelamatkan hasil panen secara nyata. Sementara perlakuan pascapanen, yakni radiasi, pencelupan buah, fumigasi, dan perlakuan udara panas dan udara dingin, juga berpeluang meningkatkan mutu buah dan sayuran untuk ekspor. Strategi pengendalian yang tak kalah pentingnya adalah peraturan perkarantinaan untuk mecegah penyebaran lalat buah dan masuknya lalat buah dari negara lain.

Buku ini mengulas tuntas lalat buah mulai dari taksonomi, tanaman inang hingga upaya pengendaliannya. Semoga buku ini dapat memberi sumbangan dalam pengembangan ilmu pengetahuan, khususnya pengetahuan tentang jenis hama lalat buah dan teknologi pengendaliannya pada tahap prapanen dan pascapanen buah dan sayuran.